Suppr超能文献

基于可见-近红外和短波近红外(VNIR-SWIR)范围光谱-图像融合的高光谱成像方法用于分类白术的地理起源(VNIR-SWIR-FuSI)。

A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI).

机构信息

Department of Industrial and Systems Engineering, Zhejiang University, Hangzhou 310058, China.

Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

出版信息

Sensors (Basel). 2019 May 1;19(9):2045. doi: 10.3390/s19092045.

Abstract

Hyperspectral data processing technique has gained increasing interests in the field of chemical and biomedical analysis. However, appropriate approaches to fusing features of hyperspectral data-cube are still lacking. In this paper, a new data fusion approach was proposed and applied to discriminate Rhizoma Atractylodis Macrocephalae (RAM) slices from different geographical origins using hyperspectral imaging. Spectral and image features were extracted from hyperspectral data in visible and near-infrared (VNIR, 435-1042 nm) and short-wave infrared (SWIR, 898-1751 nm) ranges, respectively. Effective wavelengths were extracted from pre-processed spectral data by successive projection algorithm (SPA). Meanwhile, gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix (GLRLM) were employed to extract textural variables. The fusion of spectrum-image in VNIR and SWIR ranges (VNIR-SWIR-FuSI) was implemented to integrate those features on three fusion dimensions, i.e., VNIR and SWIR fusion, spectrum and image fusion, and all data fusion. Based on data fusion, partial least squares-discriminant analysis (PLS-DA) and support vector machine (SVM) were utilized to establish calibration models. The results demonstrated that VNIR-SWIR-FuSI could achieve the best accuracies on both full bands (97.3%) and SPA bands (93.2%). In particular, VNIR-SWIR-FuSI on SPA bands achieved a classification accuracy of 93.2% with only 23 bands, which was significantly better than those based on spectra (80.9%) or images (79.7%). Thus it is more rapid and possible for industry applications. The current study demonstrated that hyperspectral imaging technique with data fusion holds the potential for rapid and nondestructive sorting of traditional Chinese medicines (TCMs).

摘要

高光谱数据处理技术在化学和生物医学分析领域引起了越来越多的关注。然而,融合高光谱数据立方体特征的适当方法仍然缺乏。在本文中,提出了一种新的数据融合方法,并将其应用于利用高光谱成像技术鉴别来自不同产地的苍术切片。分别从高光谱数据的可见近红外(VNIR,435-1042nm)和短波红外(SWIR,898-1751nm)范围提取光谱和图像特征。通过连续投影算法(SPA)从预处理光谱数据中提取有效波长。同时,采用灰度共生矩阵(GLCM)和灰度行程长度矩阵(GLRLM)提取纹理变量。在 VNIR 和 SWIR 范围内进行光谱-图像融合(VNIR-SWIR-FuSI),将这些特征集成到三个融合维度上,即 VNIR 和 SWIR 融合、光谱和图像融合以及所有数据融合。基于数据融合,采用偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)建立校正模型。结果表明,VNIR-SWIR-FuSI 在全波段(97.3%)和 SPA 波段(93.2%)上都能达到最佳精度。特别是,VNIR-SWIR-FuSI 在 SPA 波段上仅用 23 个波段就能达到 93.2%的分类精度,明显优于基于光谱(80.9%)或图像(79.7%)的方法。因此,它更适合于工业应用。本研究表明,高光谱成像技术与数据融合具有快速、无损鉴别中药材的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbb1/6539508/82f45e03a449/sensors-19-02045-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验