Suppr超能文献

淀粉体沉降使 LAZY 重新极化,从而在植物中实现重力感应。

Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants.

机构信息

Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Key Laboratory of Vegetable Research Center, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

出版信息

Cell. 2023 Oct 26;186(22):4788-4802.e15. doi: 10.1016/j.cell.2023.09.014. Epub 2023 Sep 22.

Abstract

Gravity controls directional growth of plants, and the classical starch-statolith hypothesis proposed more than a century ago postulates that amyloplast sedimentation in specialized cells initiates gravity sensing, but the molecular mechanism remains uncharacterized. The LAZY proteins are known as key regulators of gravitropism, and lazy mutants show striking gravitropic defects. Here, we report that gravistimulation by reorientation triggers mitogen-activated protein kinase (MAPK) signaling-mediated phosphorylation of Arabidopsis LAZY proteins basally polarized in root columella cells. Phosphorylation of LAZY increases its interaction with several translocons at the outer envelope membrane of chloroplasts (TOC) proteins on the surface of amyloplasts, facilitating enrichment of LAZY proteins on amyloplasts. Amyloplast sedimentation subsequently guides LAZY to relocate to the new lower side of the plasma membrane in columella cells, where LAZY induces asymmetrical auxin distribution and root differential growth. Together, this study provides a molecular interpretation for the starch-statolith hypothesis: the organelle-movement-triggered molecular polarity formation.

摘要

重力控制着植物的定向生长,一个多世纪前提出的经典淀粉-重力石假说认为,质体在专门化细胞中的沉降启动了重力感应,但分子机制尚不清楚。LAZY 蛋白被认为是向性的关键调节剂,lazy 突变体表现出明显的向性缺陷。在这里,我们报告说,重新定向的重刺激触发了拟南芥 LAZY 蛋白的丝裂原活化蛋白激酶(MAPK)信号转导介导的磷酸化,该磷酸化在根中柱细胞中基底极化。LAZY 的磷酸化增加了其与质体表面淀粉粒上几种位于叶绿体外被膜(TOC)蛋白的易位酶的相互作用,从而促进 LAZY 蛋白在淀粉粒上的富集。随后,淀粉粒的沉降引导 LAZY 重新定位到中柱细胞新的下侧质膜,在那里 LAZY 诱导不对称生长素分布和根的差异生长。总之,这项研究为淀粉-重力石假说提供了分子解释:细胞器运动触发的分子极性形成。

相似文献

1
Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants.
Cell. 2023 Oct 26;186(22):4788-4802.e15. doi: 10.1016/j.cell.2023.09.014. Epub 2023 Sep 22.
4
Gravity sensing and signal conversion in plant gravitropism.
J Exp Bot. 2019 Jul 23;70(14):3495-3506. doi: 10.1093/jxb/erz158.
6
An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing.
Plant Cell. 2011 May;23(5):1830-48. doi: 10.1105/tpc.110.079442. Epub 2011 May 20.
7
Studying starch content and sedimentation of amyloplast statoliths in Arabidopsis roots.
Methods Mol Biol. 2011;774:103-11. doi: 10.1007/978-1-61779-234-2_7.
8
Gravitropism and starch statoliths in an Arabidopsis mutant.
Planta. 1991 Jul;184(4):491-7. doi: 10.1007/BF00197897.
9
Gravity sensing and signaling.
Curr Opin Plant Biol. 2004 Dec;7(6):712-8. doi: 10.1016/j.pbi.2004.09.001.
10
Mechanism of higher plant gravity sensing.
Am J Bot. 2013 Jan;100(1):91-100. doi: 10.3732/ajb.1200315. Epub 2012 Oct 31.

引用本文的文献

1
Split-YFP-coupled interaction-dependent TurboID identifies new functions of basal cell polarity in .
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2502445122. doi: 10.1073/pnas.2502445122. Epub 2025 Aug 6.
6
HSFA2D-LAZY6-LAZY1 module regulates shoot gravitropism and tiller angle in rice.
New Phytol. 2025 Jul;247(2):625-636. doi: 10.1111/nph.70237. Epub 2025 May 23.
7
Mechanisms of auxin action in plant growth and development.
Nat Rev Mol Cell Biol. 2025 May 19. doi: 10.1038/s41580-025-00851-2.
8
Exploring plant responses to altered gravity for advancing space agriculture.
Plant Commun. 2025 May 9:101370. doi: 10.1016/j.xplc.2025.101370.
9
How it all begins: molecular players of the early graviresponse in the non-elongating part of flax stem.
Plant Mol Biol. 2025 Apr 26;115(3):61. doi: 10.1007/s11103-025-01588-4.
10
Mechanosensing antagonizes ethylene signaling to promote root gravitropism in rice.
Nat Commun. 2025 Apr 19;16(1):3712. doi: 10.1038/s41467-025-59047-z.

本文引用的文献

1
Architecture of chloroplast TOC-TIC translocon supercomplex.
Nature. 2023 Mar;615(7951):349-357. doi: 10.1038/s41586-023-05744-y. Epub 2023 Jan 26.
2
BRXL4-LAZY1 interaction at the plasma membrane controls Arabidopsis branch angle and gravitropism.
Plant J. 2023 Jan;113(2):211-224. doi: 10.1111/tpj.16055. Epub 2022 Dec 24.
3
Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes.
Cell. 2022 Dec 8;185(25):4788-4800.e13. doi: 10.1016/j.cell.2022.10.030. Epub 2022 Nov 21.
4
A novel CRISPR/Cas9 system for efficiently generating Cas9-free multiplex mutants in .
aBIOTECH. 2019 Nov 20;1(1):6-14. doi: 10.1007/s42994-019-00011-z. eCollection 2020 Jan.
6
Gravity Signaling in Flowering Plant Roots.
Plants (Basel). 2020 Sep 29;9(10):1290. doi: 10.3390/plants9101290.
7
Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of expression in .
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18840-18848. doi: 10.1073/pnas.2005871117. Epub 2020 Jul 20.
8
AtDRO1 is nuclear localized in root tips under native conditions and impacts auxin localization.
Plant Mol Biol. 2020 May;103(1-2):197-210. doi: 10.1007/s11103-020-00984-2. Epub 2020 Mar 4.
10
Noncanonical auxin signaling regulates cell division pattern during lateral root development.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21285-21290. doi: 10.1073/pnas.1910916116. Epub 2019 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验