Suppr超能文献

建立生前期环孢子虫(Cyclospora cayetanensis)采样模型,并针对不同的水和农产品采样方案进行测试。

Modeling Preharvest Cyclospora cayetanensis Sampling and Testing for Various Water and Produce Sampling Plans.

机构信息

Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA.

Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA.

出版信息

J Food Prot. 2023 Nov;86(11):100161. doi: 10.1016/j.jfp.2023.100161. Epub 2023 Sep 22.

Abstract

As of August 2023, the two U.S. Food and Drug Administration (FDA) official detection methods for C. cayetanensis are outlined in the FDA Bacteriological Analytical Manual (BAM) Chapters 19b (produce testing) and 19c (agricultural water testing). These newly developed detection methods have been shown to not always detect contamination when present at low levels. Yet, industry and regulators may choose to use these methods as part of their monitoring and verification activities while detection methods continue to be improved. This study uses simulation to better understand the performance of these methods for various produce and water sampling plans. To do so, we used published FDA test validation data to fit a logistic regression model that predicts the methods' detection rate given the number of oocysts present in a 10-L agricultural water or 25 g produce sample. By doing so, we were able to determine contamination thresholds at which different numbers of samples (n = 1, 2, 4, 8, 16, and 32) would be adequate for detecting contamination. Furthermore, to evaluate sampling plans in use cases, a simulation was developed to represent C. cayetanensis contamination in agricultural water and on cilantro throughout a 45-day growth cycle. The model included uncertainty around the contamination sources, including scenarios of unintentionally contaminated irrigation water or in-field contamination. The results demonstrate that in cases where irrigation water was the contamination source, frequent water testing proved to be more powerful than produce testing. In scenarios where contamination occurred in-field, conducting frequent produce testing or testing produce toward the end of the season more reliably detected contamination. This study models the power of C. cayetanensis detection methods to understand the sampling plan performance and how these methods can be better used to monitor this emerging food safety hazard.

摘要

截至 2023 年 8 月,美国食品和药物管理局(FDA)有两种针对 C. cayetanensis 的官方检测方法,分别在 FDA 细菌分析手册(BAM)第 19b 章(农产品检测)和第 19c 章(农业用水检测)中有所概述。这些新开发的检测方法在低水平存在污染时并不总是能检测到。然而,在检测方法不断改进的同时,行业和监管机构可能会选择将这些方法作为其监测和验证活动的一部分。本研究通过模拟来更好地了解这些方法在不同农产品和水样采样计划中的表现。为此,我们使用已发表的 FDA 测试验证数据拟合逻辑回归模型,该模型根据 10 升农业用水或 25 克农产品样本中存在的卵囊数量预测方法的检测率。通过这样做,我们能够确定在不同污染程度下,需要进行的采样数量(n=1、2、4、8、16 和 32),以达到检测目的。此外,为了评估实际案例中的采样计划,我们开发了一个模拟程序来代表在 45 天的生长周期中农业用水和芫荽中的 C. cayetanensis 污染。该模型包括对污染来源的不确定性进行评估,包括意外污染灌溉水或田间污染的情况。结果表明,在灌溉水为污染来源的情况下,频繁的水质检测比农产品检测更有效。在田间发生污染的情况下,频繁进行农产品检测或在收获季节末期进行检测更可靠地检测到污染。本研究通过模拟来评估卵囊检测方法的效能,以了解采样计划的表现,以及如何更好地利用这些方法来监测这一新兴的食品安全隐患。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验