Suppr超能文献

CrMP-Sol 数据库:癌症相关膜蛋白及其水溶性变体设计的分类、生物信息学分析与比较。

CrMP-Sol database: classification, bioinformatic analyses and comparison of cancer-related membrane proteins and their water-soluble variant designs.

机构信息

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Zhejiang Lab, Research Center for Intelligent Computing Platforms, Hangzhou, 311121, Zhejiang, China.

出版信息

BMC Bioinformatics. 2023 Sep 25;24(1):360. doi: 10.1186/s12859-023-05477-9.

Abstract

Membrane proteins are critical mediators for tumor progression and present enormous therapeutic potentials. Although gene profiling can identify their cancer-specific signatures, systematic correlations between protein functions and tumor-related mechanisms are still unclear. We present here the CrMP-Sol database ( https://bio-gateway.aigene.org.cn/g/CrMP ), which aims to breach the gap between the two. Machine learning was used to extract key functional descriptions for protein visualization in the 3D-space, where spatial distributions provide function-based predictive connections between proteins and cancer types. CrMP-Sol also presents QTY-enabled water-soluble designs to facilitate native membrane protein studies despite natural hydrophobicity. Five examples with varying transmembrane helices in different categories were used to demonstrate the feasibility. Native and redesigned proteins exhibited highly similar characteristics, predicted structures and binding pockets, and slightly different docking poses against known ligands, although task-specific designs are still required for proteins more susceptible to internal hydrogen bond formations. The database can accelerate therapeutic developments and biotechnological applications of cancer-related membrane proteins.

摘要

膜蛋白是肿瘤进展的关键介质,具有巨大的治疗潜力。虽然基因谱分析可以识别其癌症特异性特征,但蛋白质功能与肿瘤相关机制之间的系统相关性仍不清楚。我们在这里展示 CrMP-Sol 数据库(https://bio-gateway.aigene.org.cn/g/CrMP),旨在弥合这两者之间的差距。机器学习被用于提取蛋白质在 3D 空间中的关键功能描述,在该空间中,空间分布提供了基于功能的蛋白质与癌症类型之间的预测连接。CrMP-Sol 还提供了基于 QTY 的水溶性设计,以促进天然膜蛋白的研究,尽管这些蛋白天然具有疏水性。使用五个具有不同跨膜螺旋的不同类别的示例来演示可行性。尽管对于更容易形成内部氢键的蛋白质仍然需要特定于任务的设计,但天然和重新设计的蛋白质表现出高度相似的特征、预测结构和结合口袋,以及与已知配体略有不同的对接构象。该数据库可以加速癌症相关膜蛋白的治疗开发和生物技术应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd46/10518928/9a5c0d649aff/12859_2023_5477_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验