Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, California, USA.
Res Synth Methods. 2024 Jan;15(1):21-43. doi: 10.1002/jrsm.1667. Epub 2023 Sep 24.
Meta-analyses can be compromised by studies' internal biases (e.g., confounding in nonrandomized studies) as well as publication bias. These biases often operate nonadditively: publication bias that favors significant, positive results selects indirectly for studies with more internal bias. We propose sensitivity analyses that address two questions: (1) "For a given severity of internal bias across studies and of publication bias, how much could the results change?"; and (2) "For a given severity of publication bias, how severe would internal bias have to be, hypothetically, to attenuate the results to the null or by a given amount?" These methods consider the average internal bias across studies, obviating specifying the bias in each study individually. The analyst can assume that internal bias affects all studies, or alternatively that it only affects a known subset (e.g., nonrandomized studies). The internal bias can be of unknown origin or, for certain types of bias in causal estimates, can be bounded analytically. The analyst can specify the severity of publication bias or, alternatively, consider a "worst-case" form of publication bias. Robust estimation methods accommodate non-normal effects, small meta-analyses, and clustered estimates. As we illustrate by re-analyzing published meta-analyses, the methods can provide insights that are not captured by simply considering each bias in turn. An R package implementing the methods is available (multibiasmeta).
荟萃分析可能受到研究内部偏差(例如,非随机研究中的混杂)和发表偏倚的影响。这些偏差通常不是加性的:偏向显著阳性结果的发表偏倚会间接选择具有更多内部偏差的研究。我们提出了敏感性分析,以解决两个问题:(1)“对于给定的研究内部偏差和发表偏倚的严重程度,结果可能会发生多大变化?”;以及(2)“对于给定的发表偏倚严重程度,假设内部偏差会严重到何种程度,才能将结果减弱到零或指定的幅度?”这些方法考虑了研究之间的平均内部偏差,从而避免了逐个指定每个研究的偏差。分析师可以假设内部偏差影响所有研究,或者假设它仅影响已知的子集(例如,非随机研究)。内部偏差可能来源不明,或者对于因果估计中的某些类型的偏差,可以进行分析限制。分析师可以指定发表偏倚的严重程度,或者考虑一种“最坏情况”形式的发表偏倚。稳健估计方法适用于非正态效应、小的荟萃分析和聚类估计。正如我们通过重新分析已发表的荟萃分析所说明的那样,这些方法可以提供仅凭依次考虑每种偏差无法捕捉到的见解。我们提供了一个实现这些方法的 R 包(multibiasmeta)。