Bošković Filip, Maffeo Christopher, Patiño-Guillén Gerardo, Tivony Ran, Aksimentiev Aleksei, Keyser Ulrich F
bioRxiv. 2024 May 11:2023.09.12.557357. doi: 10.1101/2023.09.12.557357.
Electrophoretic transport plays a pivotal role in advancing sensing technologies. So far, systematic studies have focused on translocation of canonical B-form or A-form nucleic acids, while direct RNA analysis is emerging as the new frontier for nanopore sensing and sequencing. Here, we compare the less-explored dynamics of non-canonical RNA:DNA hybrids in electrophoretic transport with the well-researched transport of B-form DNA. Using DNA/RNA nanotechnology and solid-state nanopores, the translocation of RNA:DNA (RD) and DNA:DNA (DD) duplexes was examined. Notably, RD duplexes were found to translocate through nanopores faster than DD duplexes, despite containing the same number of base pairs. Our experiments reveal that RD duplexes present a non-canonical helix with distinct transport properties from B-form DD molecules. We find RD and DD molecules with the same contour length move with comparable velocity through nanopores. We examined the physical characteristics of both duplex forms using atomic force microscopy, atomistic molecular dynamics simulations, agarose gel electrophoresis, and dynamic light scattering measurements. With the help of coarse-grained and molecular dynamics simulations, we find the effective force per unit length applied by the electric field to a fragment of RD or DD duplex in nanopores with various geometries or shapes to be approximately the same within experimental errors. Our results shed light on the significance of helical form in nucleic acid translocation, with implications for RNA sensing, sequencing, and molecular understanding of electrophoretic transport.
电泳输运在推动传感技术发展方面起着关键作用。到目前为止,系统研究主要集中在经典B型或A型核酸的转位,而直接RNA分析正成为纳米孔传感和测序的新前沿。在这里,我们将研究较少的非经典RNA:DNA杂交体在电泳输运中的动力学与已充分研究的B型DNA输运进行比较。利用DNA/RNA纳米技术和固态纳米孔,研究了RNA:DNA(RD)和DNA:DNA(DD)双链体的转位。值得注意的是,尽管RD双链体和DD双链体包含相同数量的碱基对,但发现RD双链体通过纳米孔的转位速度比DD双链体快。我们的实验表明,RD双链体呈现出一种非经典螺旋结构,其输运特性与B型DD分子不同。我们发现具有相同轮廓长度的RD和DD分子以相当的速度通过纳米孔。我们使用原子力显微镜、原子分子动力学模拟、琼脂糖凝胶电泳和动态光散射测量来研究两种双链体形式的物理特性。借助粗粒度和分子动力学模拟,我们发现在各种几何形状或形状的纳米孔中,电场对RD或DD双链体片段施加的每单位长度有效力在实验误差范围内大致相同。我们的结果揭示了螺旋形式在核酸转位中的重要性,对RNA传感、测序以及电泳输运的分子理解具有重要意义。