Suppr超能文献

利用小于双链 DNA 的纳米孔来减缓双链 DNA 的易位。

Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix.

机构信息

Beckman Institute, University of Illinois, Urbana, IL 61801, USA.

出版信息

Nanotechnology. 2010 Oct 1;21(39):395501. doi: 10.1088/0957-4484/21/39/395501. Epub 2010 Sep 1.

Abstract

It is now possible to slow and trap a single molecule of double-stranded DNA (dsDNA), by stretching it using a nanopore, smaller in diameter than the double helix, in a solid-state membrane. By applying an electric force larger than the threshold for stretching, dsDNA can be impelled through the pore. Once a current blockade associated with a translocating molecule is detected, the electric field in the pore is switched in an interval less than the translocation time to a value below the threshold for stretching. According to molecular dynamics (MD) simulations, this leaves the dsDNA stretched in the pore constriction with the base-pairs tilted, while the B-form canonical structure is preserved outside the pore. In this configuration, the translocation velocity is substantially reduced from 1 bp/10 ns to approximately 1 bp/2 ms in the extreme, potentially facilitating high fidelity reads for sequencing, precise sorting, and high resolution (force) spectroscopy.

摘要

现在,可以通过使用直径小于双螺旋的纳米孔拉伸双链 DNA(dsDNA)来减慢和捕获单个 dsDNA 分子。通过施加大于拉伸阈值的电场力,可以将 dsDNA 推动穿过孔。一旦检测到与迁移分子相关的电流阻断,就会在小于迁移时间的间隔内将孔中的电场切换到低于拉伸阈值的值。根据分子动力学(MD)模拟,这会使 dsDNA 在孔收缩处拉伸,碱基对倾斜,而 B 型标准结构在孔外保持不变。在这种构型下,迁移速度从 1 bp/10 ns 到极端情况下的大约 1 bp/2 ms 显著降低,这可能有利于测序、精确分拣和高分辨率(力)光谱学的高保真读取。

相似文献

1
Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix.
Nanotechnology. 2010 Oct 1;21(39):395501. doi: 10.1088/0957-4484/21/39/395501. Epub 2010 Sep 1.
2
Nanopore Translocation Reveals Electrophoretic Force on Noncanonical RNA:DNA Double Helix.
ACS Nano. 2024 Jun 11;18(23):15013-15024. doi: 10.1021/acsnano.4c01466. Epub 2024 May 31.
3
The electromechanics of DNA in a synthetic nanopore.
Biophys J. 2006 Feb 1;90(3):1098-106. doi: 10.1529/biophysj.105.070672. Epub 2005 Nov 11.
4
Slowing down DNA translocation through solid-state nanopores by pressure.
Small. 2013 Dec 20;9(24):4112-7. doi: 10.1002/smll.201301263. Epub 2013 Jul 5.
5
Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.
ACS Nano. 2013 Aug 27;7(8):6816-24. doi: 10.1021/nn403575n. Epub 2013 Jul 26.
6
Slowing down DNA translocation through a nanopore in lithium chloride.
Nano Lett. 2012 Feb 8;12(2):1038-44. doi: 10.1021/nl204273h. Epub 2012 Jan 27.
7
Capture and Translocation Characteristics of Short Branched DNA Labels in Solid-State Nanopores.
ACS Sens. 2018 Jul 27;3(7):1308-1315. doi: 10.1021/acssensors.8b00165. Epub 2018 Jun 19.
8
Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
Nanotechnology. 2014 Jul 11;25(27):275501. doi: 10.1088/0957-4484/25/27/275501. Epub 2014 Jun 24.
9
Unraveling single-stranded DNA in a solid-state nanopore.
Nano Lett. 2010 Apr 14;10(4):1414-20. doi: 10.1021/nl100271c.
10
The passage of homopolymeric RNA through small solid-state nanopores.
Small. 2011 Aug 8;7(15):2217-24. doi: 10.1002/smll.201100265. Epub 2011 Jun 3.

引用本文的文献

1
Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges.
Int J Mol Sci. 2023 Mar 24;24(7):6153. doi: 10.3390/ijms24076153.
2
Spontaneous DNA translocation through a van der Waals heterostructure nanopore for single-molecule detection.
Nanoscale Adv. 2021 Aug 16;3(20):5941-5947. doi: 10.1039/d1na00476j. eCollection 2021 Oct 12.
5
Entropic Trapping of DNA with a Nanofiltered Nanopore.
ACS Appl Nano Mater. 2019 Aug 23;2(8):4773-4781. doi: 10.1021/acsanm.9b00606. Epub 2019 Jun 19.
6
Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh.
Eur Biophys J. 2019 Apr;48(3):261-266. doi: 10.1007/s00249-019-01350-x. Epub 2019 Mar 2.
7
Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride.
Sci Rep. 2017 Nov 8;7(1):15096. doi: 10.1038/s41598-017-12684-x.
8
Mechanical Trapping of DNA in a Double-Nanopore System.
Nano Lett. 2016 Dec 14;16(12):8021-8028. doi: 10.1021/acs.nanolett.6b04642. Epub 2016 Dec 1.
9
Polymer translocation through nano-pores in vibrating thin membranes.
Sci Rep. 2016 Dec 9;6:38558. doi: 10.1038/srep38558.

本文引用的文献

1
Nanopore Sequencing: Electrical Measurements of the Code of Life.
IEEE Trans Nanotechnol. 2010 May 1;9(3):281-294. doi: 10.1109/TNANO.2010.2044418.
2
Deciphering ionic current signatures of DNA transport through a nanopore.
Nanoscale. 2010 Apr;2(4):468-83. doi: 10.1039/b9nr00275h. Epub 2010 Feb 2.
3
Molecular diagnostics for personal medicine using a nanopore.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Jul-Aug;2(4):367-81. doi: 10.1002/wnan.86.
4
Nanopores in solid-state membranes engineered for single molecule detection.
Nanotechnology. 2010 Feb 10;21(6):065502. doi: 10.1088/0957-4484/21/6/065502. Epub 2010 Jan 11.
5
Low-frequency noise in solid-state nanopores.
Nanotechnology. 2009 Mar 4;20(9):095501. doi: 10.1088/0957-4484/20/9/095501. Epub 2009 Feb 11.
6
Nanoelectromechanics of methylated DNA in a synthetic nanopore.
Biophys J. 2009 Feb 18;96(4):L32-4. doi: 10.1016/j.bpj.2008.12.3760.
7
Microscopic mechanics of hairpin DNA translocation through synthetic nanopores.
Biophys J. 2009 Jan;96(2):593-608. doi: 10.1016/j.bpj.2008.09.023.
8
The potential and challenges of nanopore sequencing.
Nat Biotechnol. 2008 Oct;26(10):1146-53. doi: 10.1038/nbt.1495.
9
Trapping molecules on a chip in traveling potential wells.
Phys Rev Lett. 2008 Apr 18;100(15):153003. doi: 10.1103/PhysRevLett.100.153003. Epub 2008 Apr 17.
10
Noise in solid-state nanopores.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):417-21. doi: 10.1073/pnas.0705349105. Epub 2008 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验