Suppr超能文献

动态分类规则改变人类视觉皮层中的表征。

Dynamic categorization rules alter representations in human visual cortex.

作者信息

Henderson Margaret M, Serences John T, Rungratsameetaweemana Nuttida

机构信息

Department of Psychology, Carnegie Mellon University, Pittsburgh, USA.

Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA.

出版信息

bioRxiv. 2025 Jan 6:2023.09.11.557257. doi: 10.1101/2023.09.11.557257.

Abstract

Everyday perceptual tasks require sensory stimuli to be dynamically encoded and analyzed according to changing behavioral goals. For example, when searching for an apple at the supermarket, one might first find the Granny Smith apples by separating all visible apples into the categories "green" and "non-green". However, suddenly remembering that your family actually likes Fuji apples would necessitate reconfiguring the boundary to separate "red" from "red-yellow" objects. This flexible processing enables identical sensory stimuli to elicit varied behaviors based on the current task context. While this phenomenon is ubiquitous in nature, little is known about the neural mechanisms that underlie such flexible computation. Traditionally, sensory regions have been viewed as mainly devoted to processing inputs, with limited involvement in adapting to varying task contexts. However, from the standpoint of efficient computation, it is plausible that sensory regions integrate inputs with current task goals, facilitating more effective information relay to higher-level cortical areas. Here we test this possibility by asking human participants to visually categorize novel shape stimuli based on different linear and non-linear boundaries. Using fMRI and multivariate analyses of retinotopically-defined visual areas, we found that shape representations in visual cortex became more distinct across relevant decision boundaries in a context-dependent manner, with the largest changes in discriminability observed for stimuli near the decision boundary. Importantly, these context-driven modulations were associated with improved categorization performance. Together, these findings demonstrate that codes in visual cortex are adaptively modulated to optimize object separability based on currently relevant decision boundaries.

摘要

日常感知任务需要根据不断变化的行为目标对感觉刺激进行动态编码和分析。例如,在超市寻找苹果时,人们可能首先通过将所有可见苹果分为“绿色”和“非绿色”类别来找到澳洲青苹。然而,突然想起家人实际上喜欢富士苹果,就需要重新调整边界,将“红色”与“红黄相间”的物体区分开来。这种灵活的处理方式使相同的感觉刺激能够根据当前任务背景引发不同的行为。虽然这种现象在自然界中普遍存在,但对于这种灵活计算背后的神经机制却知之甚少。传统上,感觉区域主要被视为致力于处理输入信息,在适应不同任务背景方面的参与有限。然而,从高效计算的角度来看,感觉区域将输入信息与当前任务目标整合起来,促进更有效地向高级皮层区域传递信息,这是合理的。在这里,我们通过要求人类参与者根据不同的线性和非线性边界对新颖形状刺激进行视觉分类来测试这种可能性。使用功能磁共振成像(fMRI)和对视网膜拓扑定义的视觉区域进行多变量分析,我们发现视觉皮层中的形状表征在相关决策边界上以依赖于上下文的方式变得更加明显,对于靠近决策边界的刺激,可辨别性变化最大。重要的是,这些由上下文驱动的调制与分类性能的提高相关。总之,这些发现表明,视觉皮层中的编码会根据当前相关决策边界进行自适应调制,以优化物体的可分离性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc93/11730884/af81f07d5c23/nihpp-2023.09.11.557257v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验