Suppr超能文献

注意优先级由预测的特征分布决定。

Attentional priority is determined by predicted feature distributions.

机构信息

Center for Mind and Brain.

出版信息

J Exp Psychol Hum Percept Perform. 2022 Nov;48(11):1201-1212. doi: 10.1037/xhp0001041. Epub 2022 Sep 1.

Abstract

Visual attention is often characterized as being guided by precise memories for target objects. However, real-world search targets have dynamic features that vary over time, meaning that observers must predict how the target based on how features are expected to change. Despite its importance, little is known about how target feature predictions influence feature-based attention, or how these predictions are represented in the target template. In Experiment 1 ( = 60 university students), we show observers readily track the statistics of target features over time and adapt attentional priority to predictions about the distribution of target features. In Experiments 2a and 2b ( = 480 university students), we show that these predictions are encoded into the target template as a distribution of likelihoods over possible target features, which are independent of memory precision for the cued item. These results provide a novel demonstration of how observers represent predicted feature distributions when target features are uncertain and show that these predictions are used to set attentional priority during visual search. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

视觉注意力通常的特点是由对目标对象的精确记忆来引导。然而,现实世界中的搜索目标具有随时间变化的动态特征,这意味着观察者必须根据特征预计如何变化来预测目标。尽管它很重要,但对于目标特征预测如何影响基于特征的注意力,或者这些预测如何在目标模板中表示,人们知之甚少。在实验 1(=60 名大学生)中,我们表明观察者可以轻松地随时间跟踪目标特征的统计信息,并根据目标特征分布的预测来调整注意力优先级。在实验 2a 和 2b(=480 名大学生)中,我们表明这些预测被编码为目标模板中的可能目标特征的可能性分布,这与提示项目的记忆精度无关。这些结果提供了一个关于当目标特征不确定时观察者如何表示预测特征分布的新范例,并表明这些预测用于在视觉搜索期间设置注意力优先级。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

相似文献

1
Attentional priority is determined by predicted feature distributions.注意优先级由预测的特征分布决定。
J Exp Psychol Hum Percept Perform. 2022 Nov;48(11):1201-1212. doi: 10.1037/xhp0001041. Epub 2022 Sep 1.
5
Guidance of visual search by negative attentional templates depends on task demands.负性注意模板对视觉搜索的引导取决于任务需求。
J Exp Psychol Hum Percept Perform. 2022 Jun;48(6):653-664. doi: 10.1037/xhp0001005. Epub 2022 Apr 21.
10
How feature context alters attentional template switching.特征语境如何改变注意模板转换。
J Exp Psychol Hum Percept Perform. 2021 Nov;47(11):1431-1444. doi: 10.1037/xhp0000951. Epub 2021 Sep 30.

引用本文的文献

5
Distractor similarity and category variability effects in search.搜索中的分心物相似性和类别可变性效应。
Atten Percept Psychophys. 2024 Oct;86(7):2231-2250. doi: 10.3758/s13414-024-02924-4. Epub 2024 Jul 9.
8
Representational structures as a unifying framework for attention.代表性结构作为注意力的统一框架。
Trends Cogn Sci. 2024 May;28(5):416-427. doi: 10.1016/j.tics.2024.01.002. Epub 2024 Jan 27.

本文引用的文献

1
Five Factors that Guide Attention in Visual Search.视觉搜索中引导注意力的五个因素。
Nat Hum Behav. 2017 Mar;1(3). doi: 10.1038/s41562-017-0058. Epub 2017 Mar 8.
3
5
Guided Search 6.0: An updated model of visual search.引导式搜索 6.0:一种更新的视觉搜索模型。
Psychon Bull Rev. 2021 Aug;28(4):1060-1092. doi: 10.3758/s13423-020-01859-9. Epub 2021 Feb 5.
10
Learning to Perceive and Perceiving to Learn.学会感知与感知中学习。
Trends Cogn Sci. 2020 Apr;24(4):260-261. doi: 10.1016/j.tics.2020.01.002. Epub 2020 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验