Nieto César, Vargas-García César, Pedraza Juan Manuel, Singh Abhyudai
Department of Physics, Universidad de los Andes, Bogotá, Colombia.
Department of Electrical and Computing Engineering, University of Delaware. Newark, DE 19716, USA.
bioRxiv. 2023 Sep 15:2023.09.11.557238. doi: 10.1101/2023.09.11.557238.
Under ideal conditions, cells divide after adding a fixed cell size, a strategy known as the . This concept applies to various microbes and is often explained as the division that occurs after a certain number of stages, associated with the accumulation of precursor proteins at a rate proportional to cell size. However, under poor media conditions, cells exhibit a different size regulation. They are smaller and follow a division strategy where the added size is inversely proportional to the size at birth. We explore three potential causes for this deviation: precursor protein degradation, nonlinear accumulation rate, and a threshold size termed the . These models fit mean trends but predict different distributions given the birth size. To validate these models, we used the Akaike information criterion and compared them to open datasets of slow-growing cells in different media. the degradation model could explain the division strategy for media where cells are larger, while the commitment size model could account for smaller cells. The power-law model, finally, better fits the data at intermediate regimes.
在理想条件下,细胞在达到固定的细胞大小时进行分裂,这一策略被称为 。这一概念适用于各种微生物,通常被解释为在一定数量的阶段后发生的分裂,这与前体蛋白以与细胞大小成比例的速率积累有关。然而,在恶劣的培养基条件下,细胞表现出不同的大小调节。它们更小,并遵循一种 分裂策略,即增加的大小与出生时的大小成反比。我们探讨了这种偏差的三个潜在原因:前体蛋白降解、非线性积累速率以及一个被称为 的阈值大小。这些模型符合平均趋势,但根据出生大小预测出不同的分布。为了验证这些模型,我们使用了赤池信息准则,并将它们与不同培养基中生长缓慢的 细胞的开放数据集进行比较。降解模型可以解释细胞较大的培养基中的分裂策略,而承诺大小模型可以解释较小细胞的情况。最后,幂律模型在中间状态下能更好地拟合数据。