Suppr超能文献

使用注意力循环网络的低延迟有源噪声控制

Low-Latency Active Noise Control Using Attentive Recurrent Network.

作者信息

Zhang Hao, Pandey Ashutosh, Wang DeLiang

机构信息

Department of Computer Science and Engineering, Ohio State University, Columbus, OH 43210-1277 USA.

Department of Computer Science and Engineering and the Center for Cognitive and Brain Sciences, Ohio State University, Columbus, OH 43210-1277 USA.

出版信息

IEEE/ACM Trans Audio Speech Lang Process. 2023;31:1114-1123. doi: 10.1109/taslp.2023.3244528. Epub 2023 Feb 13.

Abstract

Processing latency is a critical issue for active noise control (ANC) due to the causality constraint of ANC systems. This paper addresses low-latency ANC in the context of deep learning (i.e. deep ANC). A time-domain method using an attentive recurrent network (ARN) is employed to perform deep ANC with smaller frame sizes, thus reducing algorithmic latency of deep ANC. In addition, we introduce a delay-compensated training to perform ANC using predicted noise for several milliseconds. Moreover, a revised overlap-add method is utilized during signal resynthesis to avoid the latency introduced due to overlaps between neighboring time frames. Experimental results show the effectiveness of the proposed strategies for achieving low-latency deep ANC. Combining the proposed strategies is capable of yielding zero, even negative, algorithmic latency without affecting ANC performance much, thus alleviating the causality constraint in ANC design.

摘要

由于有源噪声控制(ANC)系统的因果性约束,处理延迟是有源噪声控制中的一个关键问题。本文在深度学习的背景下(即深度ANC)探讨低延迟ANC。采用一种使用注意力循环网络(ARN)的时域方法,以较小的帧大小执行深度ANC,从而降低深度ANC的算法延迟。此外,我们引入了一种延迟补偿训练,使用预测噪声进行几毫秒的ANC。此外,在信号重新合成期间采用了一种改进的重叠相加方法,以避免由于相邻时间帧之间的重叠而引入的延迟。实验结果表明了所提出的实现低延迟深度ANC策略的有效性。结合所提出的策略能够产生零甚至负的算法延迟,而不会对ANC性能产生太大影响,从而缓解了ANC设计中的因果性约束。

相似文献

1
Low-Latency Active Noise Control Using Attentive Recurrent Network.使用注意力循环网络的低延迟有源噪声控制
IEEE/ACM Trans Audio Speech Lang Process. 2023;31:1114-1123. doi: 10.1109/taslp.2023.3244528. Epub 2023 Feb 13.
9
Active Noise Cancellation with MEMS Resonant Microphone Array.采用MEMS谐振麦克风阵列的有源噪声消除
J Microelectromech Syst. 2020 Oct;29(5):839-845. doi: 10.1109/jmems.2020.3011938. Epub 2020 Aug 4.
10
Spatially selective active noise control systems.空间选择性有源噪声控制系统。
J Acoust Soc Am. 2023 May 1;153(5):2733. doi: 10.1121/10.0019336.

本文引用的文献

2
Self-attending RNN for Speech Enhancement to Improve Cross-corpus Generalization.用于语音增强以提高跨语料库泛化能力的自关注循环神经网络
IEEE/ACM Trans Audio Speech Lang Process. 2022;30:1374-1385. doi: 10.1109/taslp.2022.3161143. Epub 2022 Mar 22.
3
A New Framework for CNN-Based Speech Enhancement in the Time Domain.基于卷积神经网络的时域语音增强新框架。
IEEE/ACM Trans Audio Speech Lang Process. 2019 Jul;27(7):1179-1188. doi: 10.1109/taslp.2019.2913512. Epub 2019 Apr 29.
4
Towards Model Compression for Deep Learning Based Speech Enhancement.面向基于深度学习的语音增强的模型压缩
IEEE/ACM Trans Audio Speech Lang Process. 2021;29:1785-1794. doi: 10.1109/taslp.2021.3082282. Epub 2021 May 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验