Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA.
Epilepsia. 2024 Jan;65(1):204-217. doi: 10.1111/epi.17779. Epub 2023 Nov 29.
γ-Aminobutyric acid type A (GABA ) receptor subunit gene mutations are major causes of various epilepsy syndromes, including severe kinds such as Dravet syndrome. Although the GABA receptor is a major target for antiseizure medications, treating GABA receptor mutations with receptor channel modulators is ineffective. Here, we determined the effect of a novel treatment with 4-phenylbutyrate (PBA) in Gabrg2 knockin mice associated with Dravet syndrome.
We used biochemistry in conjunction with differential tagging of the wild-type and the mutant alleles, live brain slice surface biotinylation, microsome isolation, patch-clamp whole-cell recordings, and video-monitoring synchronized electroencephalographic (EEG) recordings in Gabrg2 mice to determine the effect of PBA in vitro with recombinant GABA receptors and in vivo with knockin mice.
We found that PBA reduced the mutant γ2(Q390X) subunit protein aggregates, enhanced the wild-type GABA receptor subunits' trafficking, and increased the membrane expression of the wild-type receptors. PBA increased the current amplitude of GABA-evoked current in human embryonic kidney 293T cells and the neurons bearing the γ2(Q390X) subunit protein. PBA also proved to reduce endoplasmic reticulum (ER) stress caused by the mutant γ2(Q390X) subunit protein, as well as mitigating seizures and EEG abnormalities in the Gabrg2 mice.
This research has unveiled a promising and innovative approach for treating epilepsy linked to GABA receptor mutations through an unconventional antiseizure mechanism. Rather than directly modulating the affected mutant channel, PBA facilitates the folding and transportation of wild-type receptor subunits to the cell membrane and synapse. Combining these findings with our previous study, which demonstrated PBA's efficacy in restoring GABA transporter 1 (encoded by SLC6A1) function, we propose that PBA holds significant potential for a wide range of genetic epilepsies. Its ability to target shared molecular pathways involving mutant protein ER retention and impaired protein membrane trafficking suggests broad application in treating such conditions.
γ-氨基丁酸 A 型 (GABA) 受体亚基基因突变是各种癫痫综合征的主要原因,包括 Dravet 综合征等严重类型。尽管 GABA 受体是抗癫痫药物的主要靶点,但用受体通道调节剂治疗 GABA 受体突变是无效的。在这里,我们确定了用 4-苯丁酸(PBA)治疗与 Dravet 综合征相关的 Gabrg2 基因敲入小鼠的新治疗方法的效果。
我们使用生物化学方法,结合野生型和突变型等位基因的差异标记、活脑片表面生物素化、微粒体分离、膜片钳全细胞记录以及 Gabrg2 小鼠的视频监测同步脑电图(EEG)记录,来确定 PBA 在体外重组 GABA 受体和体内基因敲入小鼠中的作用。
我们发现 PBA 减少了突变 γ2(Q390X)亚基蛋白聚集体,增强了野生型 GABA 受体亚基的运输,并增加了野生型受体的膜表达。PBA 增加了人胚肾 293T 细胞和携带 γ2(Q390X)亚基蛋白的神经元中 GABA 诱导电流的电流幅度。PBA 还证明可以减轻突变 γ2(Q390X)亚基蛋白引起的内质网(ER)应激,并减轻 Gabrg2 小鼠的癫痫发作和 EEG 异常。
这项研究揭示了一种有前途的创新方法,通过一种非传统的抗癫痫机制治疗与 GABA 受体突变相关的癫痫。PBA 不是直接调节受影响的突变通道,而是促进野生型受体亚基的折叠和运输到细胞膜和突触。将这些发现与我们之前的研究结合起来,该研究表明 PBA 能够恢复 GABA 转运体 1(由 SLC6A1 编码)的功能,我们提出 PBA 具有治疗广泛遗传癫痫的巨大潜力。它能够靶向涉及突变蛋白内质网保留和蛋白膜运输受损的共同分子途径表明,它在治疗此类疾病方面具有广泛的应用前景。