Department of Head and Neck Oncology, Mazumdar Shaw Medical Center, Bangalore, India.
Integrated Head and Neck Oncology Program (DSRG-5), Mazumdar Shaw Medical Foundation, Bangalore, India.
PLoS One. 2023 Sep 25;18(9):e0291972. doi: 10.1371/journal.pone.0291972. eCollection 2023.
The high prevalence of oral potentially-malignant disorders exhibits diverse severity and risk of malignant transformation, which mandates a Point-of-Care diagnostic tool. Low patient compliance for biopsies underscores the need for minimally-invasive diagnosis. Oral cytology, an apt method, is not clinically applicable due to a lack of definitive diagnostic criteria and subjective interpretation. The primary objective of this study was to identify and evaluate the efficacy of biomarkers for cytology-based delineation of high-risk oral lesions. A comprehensive systematic review and meta-analysis of biomarkers recognized a panel of markers (n: 10) delineating dysplastic oral lesions. In this observational cross sectional study, immunohistochemical validation (n: 131) identified a four-marker panel, CD44, Cyclin D1, SNA-1, and MAA, with the best sensitivity (>75%; AUC>0.75) in delineating benign, hyperplasia, and mild-dysplasia (Low Risk Lesions; LRL) from moderate-severe dysplasia (High Grade Dysplasia: HGD) along with cancer. Independent validation by cytology (n: 133) showed that expression of SNA-1 and CD44 significantly delineate HGD and cancer with high sensitivity (>83%). Multiplex validation in another cohort (n: 138), integrated with a machine learning model incorporating clinical parameters, further improved the sensitivity and specificity (>88%). Additionally, image automation with SNA-1 profiled data set also provided a high sensitivity (sensitivity: 86%). In the present study, cytology with a two-marker panel, detecting aberrant glycosylation and a glycoprotein, provided efficient risk stratification of oral lesions. Our study indicated that use of a two-biomarker panel (CD44/SNA-1) integrated with clinical parameters or SNA-1 with automated image analysis (Sensitivity >85%) or multiplexed two-marker panel analysis (Sensitivity: >90%) provided efficient risk stratification of oral lesions, indicating the significance of biomarker-integrated cytopathology in the development of a Point-of-care assay.
口腔潜在恶性疾病的高发率表现出不同的严重程度和恶性转化风险,这需要一种即时诊断工具。由于活检的患者依从性低,因此需要进行微创诊断。口腔细胞学是一种合适的方法,但由于缺乏明确的诊断标准和主观解释,因此在临床上不可用。本研究的主要目的是确定和评估基于细胞学的高危口腔病变的生物标志物的功效。对生物标志物的全面系统评价和荟萃分析认可了一组标记物(n=10),用于描绘异型性口腔病变。在这项观察性横断面研究中,免疫组织化学验证(n=131)确定了一个由四个标志物组成的标志物(CD44、Cyclin D1、SNA-1 和 MAA)的标志物,在描绘良性、增生和轻度异型性(低风险病变;LRR)与中度-严重异型性(高级别异型性:HGD)以及癌症方面具有最佳敏感性(>75%;AUC>0.75)。细胞学独立验证(n=133)表明,SNA-1 和 CD44 的表达显著区分了 HGD 和癌症,具有较高的敏感性(>83%)。在另一队列中(n=138)进行的多重验证,结合了整合了临床参数的机器学习模型,进一步提高了敏感性和特异性(>88%)。此外,SNA-1 分析数据集中的图像自动化也提供了高敏感性(敏感性:86%)。在本研究中,细胞学检测到异常糖基化和糖蛋白的两个标志物,对口腔病变进行了有效的风险分层。我们的研究表明,使用两个生物标志物(CD44/SNA-1)与临床参数的集成,或 SNA-1 与自动图像分析(敏感性>85%)或多标记分析(敏感性:>90%)进行集成,可以对口腔病变进行有效的风险分层,这表明生物标志物集成细胞病理学在即时检测技术的发展中具有重要意义。