'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country UPV / EHU, Plaza Europa 1, Donostia / San Sebastian 20018, Gipuzkoa, Spain.
POLYMAT, University of the Basque Country UPV / EHU, Avenida Tolosa 72, Donostia / San Sebastián 20018, Gipuzkoa, Spain; Regenerative Medicine Lab, CICbiomaGUNE, Donostia / San Sebastián 20014, Gipuzkoa, Spain.
Int J Biol Macromol. 2023 Dec 31;253(Pt 4):127070. doi: 10.1016/j.ijbiomac.2023.127070. Epub 2023 Sep 23.
Articular cartilage defects comprise a spectrum of diseases associated with degeneration or damage of the connective tissue present in particular joints, presenting progressive osteoarthritis if left untreated. In vitro tissue regeneration is an innovative treatment for articular cartilage injuries that is attracting not only clinical attention, but also great interest in the development of novel biomaterials, since this procedure involves the formation of a neotissue with the help of material support. In this work, functional alginate and waterborne polyurethane (WBPU) scaffolds have been developed for articular cartilage regeneration using 3D bioprinting technology. The particular properties of alginate-WBPU blends, like mechanical strength, elasticity and moistening, mimic the original cartilage tissue characteristics, being ideal for this application. To fabricate the scaffolds, mature chondrocytes were loaded into different alginate-WBPU inks with rheological properties suitable for 3D bioprinting. Bioinks with high alginate content showed better 3D printing performance, as well as structural integrity and cell viability, being most suitable for scaffolds fabrication. After 28 days of in vitro cartilage formation experiments, scaffolds containing 3.2 and 6.4 % alginate resulted in the maintenance of cell number in the range of 10 chondrocytes/scaffold in differentiated phenotypes, capable of synthesizing specialized extracellular matrix (ECM) up to 6 μg of glycosaminoglycans (GAG) and thus, showing a potential application of these scaffolds for in vitro regeneration of articular cartilage tissue.
关节软骨缺损包括一系列与特定关节中结缔组织退变或损伤相关的疾病,如果不治疗,会进展为骨关节炎。体外组织再生是一种创新的关节软骨损伤治疗方法,不仅引起了临床关注,也引起了新型生物材料开发的极大兴趣,因为该方法涉及在材料支持的帮助下形成新组织。在这项工作中,使用 3D 生物打印技术开发了用于关节软骨再生的功能性藻酸盐和水基聚氨酯(WBPU)支架。藻酸盐-WBPU 共混物的特殊性质,如机械强度、弹性和保湿性,模拟了原始软骨组织的特性,非常适合这种应用。为了制造支架,成熟的软骨细胞被加载到不同的藻酸盐-WBPU 油墨中,其流变性能适合 3D 生物打印。高藻酸盐含量的生物墨水具有更好的 3D 打印性能以及结构完整性和细胞活力,最适合支架制造。在体外软骨形成实验 28 天后,含有 3.2%和 6.4%藻酸盐的支架可维持分化表型中每个支架 10 个软骨细胞的细胞数量,能够合成专门的细胞外基质(ECM),达到 6μg 糖胺聚糖(GAG),因此,这些支架具有用于体外关节软骨组织再生的潜在应用。