Suppr超能文献

用于微生物组研究中差异丰度检测的简单灵活的基于符号和秩的方法。

Simple and flexible sign and rank-based methods for testing for differential abundance in microbiome studies.

机构信息

Data Science Institute and I-BioStat, Hasselt University, Diepenbeek, Belgium.

Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium.

出版信息

PLoS One. 2023 Sep 26;18(9):e0292055. doi: 10.1371/journal.pone.0292055. eCollection 2023.

Abstract

Microbiome data obtained with amplicon sequencing are considered as compositional data. It has been argued that these data can be analysed after appropriate transformation to log-ratios, but ratios and logarithms cause problems with the many zeroes in typical microbiome experiments. We demonstrate that some well chosen sign and rank transformations also allow for valid inference with compositional data, and we show how logistic regression and probabilistic index models can be used for testing for differential abundance, while inheriting the flexibility of a statistical modelling framework. The results of a simulation study demonstrate that the new methods perform better than most other methods, and that it is comparable with ANCOM-BC. These methods are implemented in an R-package 'signtrans' and can be installed from Github (https://github.com/lucp9827/signtrans).

摘要

扩增子测序获得的微生物组数据被认为是组合数据。有人认为,这些数据可以在经过适当的对数比转换后进行分析,但在典型的微生物组实验中,比率和对数会导致许多零值的问题。我们证明了一些精心选择的符号和秩转换也允许对组合数据进行有效的推断,并且我们展示了逻辑回归和概率指数模型如何用于测试差异丰度,同时继承统计建模框架的灵活性。模拟研究的结果表明,新方法的性能优于大多数其他方法,并且与 ANCOM-BC 相当。这些方法在 R 包“signtrans”中实现,可以从 Github(https://github.com/lucp9827/signtrans)安装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a87c/10522045/b3d722bcfa03/pone.0292055.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验