Martin Bryan D, Witten Daniela, Willis Amy D
Department of Statistics, University of Washington.
Departments of Statistics and Biostatistics, University of Washington.
Ann Appl Stat. 2020 Mar;14(1):94-115. doi: 10.1214/19-aoas1283. Epub 2020 Apr 16.
Using a sample from a population to estimate the proportion of the population with a certain category label is a broadly important problem. In the context of microbiome studies, this problem arises when researchers wish to use a sample from a population of microbes to estimate the population proportion of a particular taxon, known as the taxon's In this paper, we propose a beta-binomial model for this task. Like existing models, our model allows for a taxon's relative abundance to be associated with covariates of interest. However, unlike existing models, our proposal also allows for the overdispersion in the taxon's counts to be associated with covariates of interest. We exploit this model in order to propose tests not only for differential relative abundance, but also for differential variability. The latter is particularly valuable in light of speculation that the perturbation from a normal microbiome that can occur in certain disease conditions, may manifest as a loss of stability, or increase in variability, of the counts associated with each taxon. We demonstrate the performance of our proposed model using a simulation study and an application to soil microbial data.
使用总体中的一个样本估计具有特定类别标签的总体比例是一个非常重要的问题。在微生物组研究的背景下,当研究人员希望使用微生物总体中的一个样本估计特定分类单元的总体比例(称为该分类单元的[此处原文缺失相关内容])时,就会出现这个问题。在本文中,我们针对此任务提出了一个贝塔 - 二项式模型。与现有模型一样,我们的模型允许分类单元的相对丰度与感兴趣的协变量相关联。然而,与现有模型不同的是,我们的提议还允许分类单元计数中的过度离散与感兴趣的协变量相关联。我们利用这个模型来提出不仅用于差异相对丰度,还用于差异变异性的检验。鉴于有推测认为,在某些疾病条件下正常微生物组可能发生的扰动,可能表现为与每个分类单元相关的计数稳定性丧失或变异性增加,后者尤其有价值。我们通过模拟研究和对土壤微生物数据的应用来展示我们提出的模型的性能。