Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria.
Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.
Mol Cell. 2023 Oct 5;83(19):3470-3484.e8. doi: 10.1016/j.molcel.2023.09.001. Epub 2023 Sep 25.
Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.
新合成蛋白质的折叠对功能蛋白质组构成挑战。专门的蛋白质质量控制(PQC)系统要么促进核糖体上新多肽的折叠,要么在折叠失败时确保其降解。虽然细胞溶质蛋白生物发生过程研究得很好,但对于线粒体编码蛋白、氧化磷酸化(OXPHOS)系统的关键亚基,这些过程如何发挥作用尚不清楚。在这里,我们确定了接近线粒体核糖体隧道出口的专用枢纽,这些枢纽协调线粒体蛋白生物发生和质量控制。保守的 PHB/m-AAA 蛋白酶超级复合物和组装伴侣的可用性通过分子分类决定新合成蛋白质的命运。这些竞争活性在靠近线粒体核糖体隧道出口的定位使得可以快速决定新合成的蛋白质是被送入 OXPHOS 组装还是被降解。