Suppr超能文献

多材料纤维作为毛细不稳定性的物理模拟器。

Multimaterial fiber as a physical simulator of a capillary instability.

作者信息

Faccini de Lima Camila, Wang Fan, Leffel Troy A, Miller Tyson, Johnson Steven G, Gumennik Alexander

机构信息

Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, USA.

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Commun. 2023 Sep 26;14(1):5816. doi: 10.1038/s41467-023-41216-7.

Abstract

Capillary breakup of cores is an exclusive approach to fabricating fiber-integrated optoelectronics and photonics. A physical understanding of this fluid-dynamic process is necessary for yielding the desired solid-state fiber-embedded multimaterial architectures by design rather than by exploratory search. We discover that the nonlinearly complex and, at times, even chaotic capillary breakup of multimaterial fiber cores becomes predictable when the fiber is exposed to the spatiotemporal temperature profile, imposing a viscosity modulation comparable to the breakup wavelength. The profile acts as a notch filter, allowing only a single wavelength out of the continuous spectrum to develop predictably, following Euler-Lagrange dynamics. We argue that this understanding not only enables designing the outcomes of the breakup necessary for turning it into a technology for materializing fiber-embedded functional systems but also positions a multimaterial fiber as a universal physical simulator of capillary instability in viscous threads.

摘要

芯体的毛细管破裂是制造光纤集成光电器件和光子器件的一种独特方法。要通过设计而非探索性搜索来获得所需的固态光纤嵌入式多材料结构,就必须对这种流体动力学过程有物理层面的理解。我们发现,当光纤暴露于时空温度分布时,多材料光纤芯体非线性复杂且有时甚至混沌的毛细管破裂变得可预测,这种温度分布会产生与破裂波长相当的粘度调制。该分布起到陷波滤波器的作用,仅允许连续光谱中的单一波长按照欧拉 - 拉格朗日动力学可预测地发展。我们认为,这种理解不仅有助于设计破裂的结果,从而将其转化为实现光纤嵌入式功能系统的技术,还将多材料光纤定位为粘性细丝中毛细管不稳定性的通用物理模拟器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa37/10522671/eecf0eac2356/41467_2023_41216_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验