C.J. Gorter MRI Center, Department of Radiology, LUMC, Leiden, The Netherlands.
Philips, Best, The Netherlands.
Magn Reson Med. 2024 Jan;91(1):205-220. doi: 10.1002/mrm.29848. Epub 2023 Sep 27.
Multi-shot diffusion-weighted EPI allows an increase in image resolution and reduced geometric distortions and can be combined with chemical-shift encoding (Dixon) to separate water/fat signals. However, such approaches suffer from physiological motion-induced shot-to-shot phase variations. In this work, a structured low-rank-based navigator-free algorithm is proposed to address the challenge of simultaneously separating water/fat signals and correcting for physiological motion-induced shot-to-shot phase variations in multi-shot EPI-based diffusion-weighted MRI.
We propose an iterative, model-based reconstruction pipeline that applies structured low-rank regularization to estimate and eliminate the shot-to-shot phase variations in a data-driven way, while separating water/fat images. The algorithm is tested in different anatomies, including head-neck, knee, brain, and prostate. The performance is validated in simulations and in-vivo experiments in comparison to existing approaches.
In-vivo experiments and simulations demonstrated the effectiveness of the proposed algorithm compared to extra-navigated and an alternative self-navigation approach. The proposed algorithm demonstrates the capability to reconstruct in the multi-shot/Dixon hybrid space domain under-sampled datasets, using the same number of acquired EPI shots compared to conventional fat-suppression techniques but eliminating fat signals through chemical-shift encoding. In addition, partial Fourier reconstruction can also be achieved by using the concept of virtual conjugate coils in conjunction with the proposed algorithm.
The proposed algorithm effectively eliminates the shot-to-shot phase variations and separates water/fat images, making it a promising solution for future DWI on different anatomies.
多次激发扩散加权 EPI 可提高图像分辨率,减少几何变形,并可与化学位移编码(Dixon)相结合,分离水/脂信号。然而,这些方法受到生理运动引起的逐次激发相位变化的影响。在这项工作中,提出了一种基于结构低秩的无导航算法,以解决在基于多次激发 EPI 的扩散加权 MRI 中同时分离水/脂信号和校正生理运动引起的逐次激发相位变化的挑战。
我们提出了一种迭代、基于模型的重建流水线,该流水线应用结构低秩正则化以数据驱动的方式估计和消除逐次激发相位变化,同时分离水/脂图像。该算法在不同的解剖部位(包括头颈部、膝关节、大脑和前列腺)进行了测试。与现有方法相比,在模拟和体内实验中验证了该算法的性能。
体内实验和模拟表明,与额外导航和另一种自导航方法相比,所提出的算法是有效的。与传统的脂肪抑制技术相比,该算法能够在多次激发/Dixon 混合空间域中对欠采样数据集进行重建,使用与传统脂肪抑制技术相同数量的 EPI 激发,但通过化学位移编码消除脂肪信号。此外,通过结合所提出的算法和虚拟共轭线圈的概念,还可以实现部分傅里叶重建。
所提出的算法有效地消除了逐次激发相位变化并分离了水/脂图像,为未来不同解剖部位的 DWI 提供了一种有前途的解决方案。