Suppr超能文献

46 毫特斯拉下的快速定量磁共振成像:基于低秩重建的加速 T1 和 T2 映射

Rapid quantitative MRI at 46 mT: Accelerated T and T mapping with low-rank reconstructions.

作者信息

Dong Yiming, Najac Chloé, van Osch Matthias J P, Webb Andrew, Börnert Peter, Lena Beatrice

机构信息

C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.

Philips Research Hamburg, Hamburg, Germany.

出版信息

Magn Reson Med. 2025 Jul;94(1):119-133. doi: 10.1002/mrm.30442. Epub 2025 Jan 29.

Abstract

PURPOSE

To evaluate accelerated T- and T-mapping techniques for ultra-low-field MRI using low-rank reconstruction methods.

METHODS

Two low-rank-based algorithms, image-based locally low-rank (LLR) and k-space-based structured low-rank (SLR), were implemented to accelerate T and T mapping on a 46 mT Halbach MRI scanner. Data were acquired with 3D turbo spin-echo sequences using variable-density poisson-disk random sampling patterns. For validation, phantom and in vivo experiments were performed on six healthy volunteers to compare the obtained values with literature and to study reconstruction performance at different undersampling factors and spatial resolutions. In addition, the reconstruction performance of the LLR and SLR algorithms for T mapping was compared using retrospective undersampling datasets. Total scan times were reduced from 45/38 min (R = 1) to 23/19 min (R = 2) and 11/9 min (R = 4) for a 2.5 × 2.5 × 5 mm resolution, and to 18/16 min (R = 4) for a higher in-plane resolution 1.5 × 1.5 × 5 mm for T/T mapping, respectively.

RESULTS

Both LLR and SLR algorithms successfully reconstructed T and T maps from undersampled data, significantly reducing scan times and eliminating undersampling artifacts. Phantom validation showed that consistent T and T values were obtained at different undersampling factors up to R = 4. For in vivo experiments, comparable image quality and estimated T and T values were obtained for fully sampled and undersampled (R = 4) reconstructions, both of which were in line with the literature values.

CONCLUSIONS

The use of low-rank reconstruction allows significant acceleration of T and T mapping in low-field MRI while maintaining image quality.

摘要

目的

使用低秩重建方法评估用于超低场磁共振成像(MRI)的加速T值和T2*值映射技术。

方法

在一台46 mT的哈尔巴赫MRI扫描仪上,实现了两种基于低秩的算法,即基于图像的局部低秩(LLR)和基于k空间的结构化低秩(SLR),以加速T值和T2值映射。使用可变密度泊松盘随机采样模式,通过3D快速自旋回波序列采集数据。为了进行验证,对六名健康志愿者进行了体模和体内实验,将获得的值与文献进行比较,并研究不同欠采样因子和空间分辨率下的重建性能。此外,使用回顾性欠采样数据集比较了LLR和SLR算法对T2值映射的重建性能。对于2.5×2.5×5 mm分辨率的T/T2值映射,总扫描时间分别从45/38分钟(R = 1)减少到23/19分钟(R = 2)和11/9分钟(R = 4),对于更高的面内分辨率1.5×1.5×5 mm的T/T2值映射,总扫描时间减少到18/16分钟(R = 4)。

结果

LLR和SLR算法均成功地从欠采样数据中重建了T值和T2值映射,显著减少了扫描时间并消除了欠采样伪影。体模验证表明,在高达R = 4的不同欠采样因子下,获得了一致的T值和T2值。对于体内实验,全采样和欠采样(R = 4)重建获得了可比的图像质量以及估计的T值和T2*值,两者均与文献值一致。

结论

使用低秩重建可在保持图像质量的同时,显著加速低场MRI中的T值和T2*值映射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e691/12021333/e6c38cd43dd3/MRM-94-119-g001.jpg

相似文献

1
Rapid quantitative MRI at 46 mT: Accelerated T and T mapping with low-rank reconstructions.
Magn Reson Med. 2025 Jul;94(1):119-133. doi: 10.1002/mrm.30442. Epub 2025 Jan 29.
2
Multipathway multi-echo (MPME) imaging: all main MR parameters mapped based on a single 3D scan.
Magn Reson Med. 2019 Mar;81(3):1699-1713. doi: 10.1002/mrm.27525. Epub 2018 Oct 15.
3
Free-breathing 3D whole-heart joint T/T mapping and water/fat imaging at 0.55 T.
Magn Reson Med. 2024 Oct;92(4):1511-1524. doi: 10.1002/mrm.30139. Epub 2024 Jun 13.
4
Low-rank reconstruction for simultaneous double half-echo Na and undersampled Na multi-quantum coherences MRI.
Magn Reson Med. 2024 Oct;92(4):1440-1455. doi: 10.1002/mrm.30132. Epub 2024 May 10.
5
6
High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI.
Magn Reson Med. 2019 Jun;81(6):3705-3719. doi: 10.1002/mrm.27694. Epub 2019 Mar 4.
7
Accelerated 3D T mapping with dictionary-based matching for prostate imaging.
Magn Reson Med. 2019 Mar;81(3):1795-1805. doi: 10.1002/mrm.27540. Epub 2018 Oct 28.
8
Model-based super-resolution reconstruction of T maps.
Magn Reson Med. 2020 Mar;83(3):906-919. doi: 10.1002/mrm.27981. Epub 2019 Sep 13.
10
Sparsity and locally low rank regularization for MR fingerprinting.
Magn Reson Med. 2019 Jun;81(6):3530-3543. doi: 10.1002/mrm.27665. Epub 2019 Feb 5.

引用本文的文献

1
Navigator-free multi-shot diffusion MRI via non-local low-rank reconstruction.
Magn Reson Med. 2025 Oct;94(4):1592-1603. doi: 10.1002/mrm.30554. Epub 2025 May 6.

本文引用的文献

2
Structured low-rank reconstruction for navigator-free water/fat separated multi-shot diffusion-weighted EPI.
Magn Reson Med. 2024 Jan;91(1):205-220. doi: 10.1002/mrm.29848. Epub 2023 Sep 27.
3
In vivo quantitative MRI: T and T measurements of the human brain at 0.064 T.
MAGMA. 2023 Jul;36(3):487-498. doi: 10.1007/s10334-023-01095-x. Epub 2023 May 20.
4
Fast and accurate T mapping using Bloch simulations and low-rank plus sparse matrix decomposition.
Magn Reson Imaging. 2023 May;98:66-75. doi: 10.1016/j.mri.2023.01.007. Epub 2023 Jan 14.
5
In vivo T mapping of neonatal brain tissue at 64 mT.
Magn Reson Med. 2023 Mar;89(3):1016-1025. doi: 10.1002/mrm.29509. Epub 2022 Nov 13.
6
Low-field MRI: Clinical promise and challenges.
J Magn Reson Imaging. 2023 Jan;57(1):25-44. doi: 10.1002/jmri.28408. Epub 2022 Sep 19.
7
Automated Parameter Selection for Accelerated MRI Reconstruction via Low-Rank Modeling of Local k-Space Neighborhoods.
Z Med Phys. 2023 May;33(2):203-219. doi: 10.1016/j.zemedi.2022.02.002. Epub 2022 Feb 22.
8
Structured Low-Rank Algorithms: Theory, Magnetic Resonance Applications, and Links to Machine Learning.
IEEE Signal Process Mag. 2020 Jan;37(1):54-68. doi: 10.1109/msp.2019.2950432. Epub 2020 Jan 17.
9
A low-cost and shielding-free ultra-low-field brain MRI scanner.
Nat Commun. 2021 Dec 14;12(1):7238. doi: 10.1038/s41467-021-27317-1.
10
In vivo T and T relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT.
Magn Reson Med. 2022 Feb;87(2):884-895. doi: 10.1002/mrm.29009. Epub 2021 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验