文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Progress in Electrochemical Immunosensors with Alkaline Phosphatase as the Signal Label.

作者信息

Chen Changdong, La Ming, Yi Xinyao, Huang Mengjie, Xia Ning, Zhou Yanbiao

机构信息

College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China.

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

出版信息

Biosensors (Basel). 2023 Aug 29;13(9):855. doi: 10.3390/bios13090855.


DOI:10.3390/bios13090855
PMID:37754089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10526794/
Abstract

Electrochemical immunosensors have shown great potential in clinical diagnosis, food safety, environmental protection, and other fields. The feasible and innovative combination of enzyme catalysis and other signal-amplified elements has yielded exciting progress in the development of electrochemical immunosensors. Alkaline phosphatase (ALP) is one of the most popularly used enzyme reporters in bioassays. It has been widely utilized to design electrochemical immunosensors owing to its significant advantages (e.g., high catalytic activity, high turnover number, and excellent substrate specificity). In this work, we summarized the achievements of electrochemical immunosensors with ALP as the signal reporter. We mainly focused on detection principles and signal amplification strategies and briefly discussed the challenges regarding how to further improve the performance of ALP-based immunoassays.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/c6b1c384d0e1/biosensors-13-00855-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/a75a1ce32441/biosensors-13-00855-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/254637232013/biosensors-13-00855-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/25a2d17952c1/biosensors-13-00855-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/806937cc6cba/biosensors-13-00855-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/ef449b3a7301/biosensors-13-00855-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/bb1e408be5f4/biosensors-13-00855-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/25ba0b9e1859/biosensors-13-00855-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/79a147f4ed70/biosensors-13-00855-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/bedafc4fb10d/biosensors-13-00855-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/36c79a635c30/biosensors-13-00855-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/89b9085a1d9d/biosensors-13-00855-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/c373bd238aac/biosensors-13-00855-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/1d5f0dd492c5/biosensors-13-00855-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/0fde202a03a4/biosensors-13-00855-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/bedff3b75354/biosensors-13-00855-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/a5df88fc6817/biosensors-13-00855-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/b07298eda690/biosensors-13-00855-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/0419338c0dd8/biosensors-13-00855-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/525c257f6cc9/biosensors-13-00855-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/1060767682e1/biosensors-13-00855-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/e2e7c8f983b0/biosensors-13-00855-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/c6b1c384d0e1/biosensors-13-00855-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/a75a1ce32441/biosensors-13-00855-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/254637232013/biosensors-13-00855-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/25a2d17952c1/biosensors-13-00855-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/806937cc6cba/biosensors-13-00855-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/ef449b3a7301/biosensors-13-00855-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/bb1e408be5f4/biosensors-13-00855-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/25ba0b9e1859/biosensors-13-00855-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/79a147f4ed70/biosensors-13-00855-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/bedafc4fb10d/biosensors-13-00855-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/36c79a635c30/biosensors-13-00855-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/89b9085a1d9d/biosensors-13-00855-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/c373bd238aac/biosensors-13-00855-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/1d5f0dd492c5/biosensors-13-00855-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/0fde202a03a4/biosensors-13-00855-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/bedff3b75354/biosensors-13-00855-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/a5df88fc6817/biosensors-13-00855-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/b07298eda690/biosensors-13-00855-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/0419338c0dd8/biosensors-13-00855-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/525c257f6cc9/biosensors-13-00855-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/1060767682e1/biosensors-13-00855-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/e2e7c8f983b0/biosensors-13-00855-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402c/10526794/c6b1c384d0e1/biosensors-13-00855-g022.jpg

相似文献

[1]
Progress in Electrochemical Immunosensors with Alkaline Phosphatase as the Signal Label.

Biosensors (Basel). 2023-8-29

[2]
Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays.

Molecules. 2023-9-11

[3]
Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling.

Molecules. 2024-6-12

[4]
DT-Diaphorase as a Bifunctional Enzyme Label That Allows Rapid Enzymatic Amplification and Electrochemical Redox Cycling.

Anal Chem. 2017-7-11

[5]
A novel multiple signal amplifying immunosensor based on the strategy of in situ-produced electroactive substance by ALP and carbon-based Ag-Au bimetallic as the catalyst and signal enhancer.

Biosens Bioelectron. 2016-10-29

[6]
Recent Advances in Electrochemical Immunosensors with Nanomaterial Assistance for Signal Amplification.

Biosensors (Basel). 2023-1-11

[7]
Label-free electrochemical immunosensor for ultrasensitive detection of neuron-specific enolase based on enzyme-free catalytic amplification.

Anal Bioanal Chem. 2018-2

[8]
Determination of Alzheimer biomarker DNA by using an electrode modified with in-situ precipitated molybdophosphate catalyzed by alkaline phosphatase-encapsulated DNA hydrogel and target recycling amplification.

Mikrochim Acta. 2019-2-4

[9]
Amplified thrombin aptasensor based on alkaline phosphatase and hemin/G-quadruplex-catalyzed oxidation of 1-naphthol.

ACS Appl Mater Interfaces. 2015-5-5

[10]
Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art.

Biosens Bioelectron. 2021-4-15

引用本文的文献

[1]
Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling.

Molecules. 2024-6-12

本文引用的文献

[1]
Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels.

Biosensors (Basel). 2023-8-3

[2]
Biorecognition element-free electrochemical detection of recombinant glycoproteins using metal-organic frameworks as signal tags.

Anal Chim Acta. 2023-9-8

[3]
Biosensors with Metal Ion-Phosphate Chelation Interaction for Molecular Recognition.

Molecules. 2023-5-28

[4]
Biosensors Based on the Binding Events of Nitrilotriacetic Acid-Metal Complexes.

Biosensors (Basel). 2023-4-28

[5]
New and Improved Nanomaterials and Approaches for Optical Bio- and Immunosensors.

Biosensors (Basel). 2023-3-31

[6]
Smartphone-based photoelectrochemical immunoassay of prostate-specific antigen based on Co-doped BiOS nanosheets.

Biosens Bioelectron. 2023-6-15

[7]
Development of Electrochemical Immunosensors for HER-1 and HER-2 Analysis in Serum for Breast Cancer Patients.

Biosensors (Basel). 2023-3-7

[8]
Investigation of Biomolecule Interactions: Optical-, Electrochemical-, and Acoustic-Based Biosensors.

Biosensors (Basel). 2023-2-18

[9]
Dual Functional Conjugated Acetylenic Polymers: High-Efficacy Modulation for Organic Photoelectrochemical Transistors and Structural Evolution for Bioelectronic Detection.

Anal Chem. 2023-2-28

[10]
Recent Advances in Electrochemical Immunosensors with Nanomaterial Assistance for Signal Amplification.

Biosensors (Basel). 2023-1-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索