Wang Meiyan, Luo Qifang, Wei Yuanfei, Zhou Yongquan
College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China.
Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China.
Biomimetics (Basel). 2023 Sep 5;8(5):411. doi: 10.3390/biomimetics8050411.
In this paper, a new hybrid Manta Ray Foraging Optimization (MRFO) with Cuckoo Search (CS) algorithm (AMRFOCS) is proposed. Firstly, quantum bit Bloch spherical coordinate coding is used for the initialization of the population, which improves the diversity of the expansion of the traversal ability of the search space. Secondly, the dynamic disturbance factor is introduced to balance the exploratory and exploitative search ability of the algorithm. Finally, the unique nesting strategy of the cuckoo and Levy flight is introduced to enhance the search ability. AMRFOCS is tested on CEC2017 and CEC2020 benchmark functions, which is also compared and tested by using different dimensions and other state-of-the-art metaheuristic algorithms. Experimental results reveal that the AMRFOCS algorithm has a superior convergence rate and optimization precision. At the same time, the nonparametric Wilcoxon signed-rank test and Friedman test show that the AMRFOCS has good stability and superiority. In addition, the proposed AMRFOCS is applied to the three-dimensional WSN coverage problem. Compared with the other four 3D deployment methods optimized by metaheuristic algorithms, the AMRFOCS effectively reduces the redundancy of sensor nodes, possesses a faster convergence speed and higher coverage and then provides a more effective and practical deployment scheme.
本文提出了一种新的结合布谷鸟搜索(CS)算法的混合蝠鲼觅食优化(MRFO)算法(AMRFOCS)。首先,采用量子比特布洛赫球坐标编码对种群进行初始化,提高了搜索空间遍历能力扩展的多样性。其次,引入动态干扰因子来平衡算法的探索性和利用性搜索能力。最后,引入布谷鸟独特的筑巢策略和莱维飞行以增强搜索能力。在CEC2017和CEC2020基准函数上对AMRFOCS进行了测试,并与使用不同维度的其他先进元启发式算法进行了比较测试。实验结果表明,AMRFOCS算法具有优越的收敛速度和优化精度。同时,非参数威尔科克森符号秩检验和弗里德曼检验表明,AMRFOCS具有良好的稳定性和优越性。此外,将所提出的AMRFOCS应用于三维无线传感器网络覆盖问题。与通过元启发式算法优化的其他四种三维部署方法相比,AMRFOCS有效降低了传感器节点的冗余度,具有更快的收敛速度和更高的覆盖率,进而提供了一种更有效、更实用的部署方案。