Chwatal Simon, Pölzl Sabine, Kittinger Clemens, Lackner Jürgen Markus, Coclite Anna Maria, Waldhauser Wolfgang
Joanneum Research Forschungsgesellschaft mbH, MATERIALS-Institut für Oberflächentechnologien und Photonik, Leobner Strasse 94a, 8712 Niklasdorf, Austria.
Diagnostic & Research Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6/III, 8010 Graz, Austria.
Gels. 2023 Aug 22;9(9):675. doi: 10.3390/gels9090675.
The versatility of sol-gel systems makes them ideal for functional coatings in industry. However, existing coatings are either too thin or take too long to cure. To address these issues, this paper proposes using an atmospheric pressure plasma source to fully cure and functionalize thicker sol-gel coatings in a single step. The study explores coating various substrates with sol-gel layers to make them scratch-resistant, antibacterial, and antiadhesive. Microparticles like copper, zinc, or copper flakes are added to achieve antibacterial effects. The sol-gel system can be sprayed on and quickly functionalized on the substrate. The study focuses on introducing and anchoring particles in the sol-gel layer to achieve an excellent antibacterial effect by changing the penetration depth. Overall, this method offers a more efficient and effective approach to sol-gel coatings for industrial applications. In order to achieve a layer thickness of more than 100 µm, the second part of the study proposes a multilayer system comprising 15 to 30 µm thick monolayers that can be modified by introducing fillers (such as TiO) or scratch-resistant chemicals like titanium isopropoxide. This system also allows for individual plasma functionalization of each sol-gel layer. For instance, the top layer can be introduced with antibacterial particles, while another layer can be enhanced with fillers to increase wear resistance. The study reveals the varying antibacterial effects of spherical particles versus flat flakes and the different scratch hardnesses induced by changes in pH, number of layers, and particle introduction.
溶胶-凝胶体系的多功能性使其成为工业中功能性涂层的理想选择。然而,现有的涂层要么太薄,要么固化时间太长。为了解决这些问题,本文提出使用大气压等离子体源在一步中完全固化并使较厚的溶胶-凝胶涂层功能化。该研究探索用溶胶-凝胶层涂覆各种基材,使其具有抗划伤、抗菌和抗粘附性能。添加铜、锌或铜片等微粒以实现抗菌效果。溶胶-凝胶体系可以喷涂在基材上并快速功能化。该研究着重于在溶胶-凝胶层中引入和固定颗粒,通过改变渗透深度来实现优异的抗菌效果。总体而言,这种方法为工业应用中的溶胶-凝胶涂层提供了一种更高效有效的途径。为了实现超过100 µm的层厚度,该研究的第二部分提出了一种多层体系,由15至30 µm厚的单层组成,可通过引入填料(如TiO)或抗划伤化学品(如异丙醇钛)进行改性。该体系还允许对每个溶胶-凝胶层进行单独的等离子体功能化。例如,顶层可以引入抗菌颗粒,而另一层可以用填料增强以提高耐磨性。该研究揭示了球形颗粒与扁平薄片不同的抗菌效果,以及由pH值、层数和颗粒引入的变化所引起的不同划痕硬度。