Department of Medical Microbiology and Immunology, University of Wisconsin-Madison , Madison, Wisconsin, USA.
Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin, USA.
Infect Immun. 2023 Oct 17;91(10):e0002223. doi: 10.1128/iai.00022-23. Epub 2023 Sep 27.
is a remarkably well-adapted facultative intracellular pathogen that can thrive in a wide range of ecological niches. maximizes its ability to generate energy from diverse carbon sources using a respiro-fermentative metabolism that can function under both aerobic and anaerobic conditions. Cellular respiration maintains redox homeostasis by regenerating NAD while also generating a proton motive force. The end products of the menaquinone (MK) biosynthesis pathway are essential to drive both aerobic and anaerobic cellular respirations. We previously demonstrated that intermediates in the MK biosynthesis pathway, notably 1,4-dihydroxy-2-naphthoate (DHNA), are required for the survival and virulence of independent of their role in respiration. Furthermore, we found that restoration of NAD/NADH ratio through expression of water-forming NADH oxidase could rescue phenotypes associated with DHNA deficiency. Here, we extend these findings to demonstrate that endogenous production or direct supplementation of DHNA restored both the cellular redox homeostasis and metabolic output of fermentation in . Furthermore, exogenous supplementation of DHNA rescues the growth and virulence of DHNA-deficient mutants. Finally, we demonstrate that exogenous DHNA restores redox balance in specifically through the recently annotated NADH dehydrogenase Ndh2, independent of its role in the extracellular electron transport pathway. These data suggest that the production of DHNA may represent an additional layer of metabolic adaptability by to drive energy metabolism in the absence of respiration-favorable conditions.
是一种适应性极强的兼性细胞内病原体,能够在广泛的生态位中生存。最大限度地利用呼吸发酵代谢从各种碳源中产生能量,这种代谢可以在有氧和无氧条件下发挥作用。细胞呼吸通过再生 NAD 来维持氧化还原平衡,同时产生质子动力。甲萘醌 (MK) 生物合成途径的终产物对于驱动有氧和无氧细胞呼吸都是必不可少的。我们之前的研究表明,MK 生物合成途径中的中间体,特别是 1,4-二羟基-2-萘酸 (DHNA),对于 的存活和毒力是必需的,而与它们在呼吸中的作用无关。此外,我们发现通过表达形成水的 NADH 氧化酶来恢复 NAD/NADH 比值可以挽救与 DHNA 缺乏相关的表型。在这里,我们扩展了这些发现,证明内源性产生或直接补充 DHNA 恢复了 的细胞氧化还原稳态和发酵的代谢产物。此外,外源性补充 DHNA 可挽救 DHNA 缺陷突变体的生长和毒力。最后,我们证明外源性 DHNA 通过最近注释的 NADH 脱氢酶 Ndh2 特异性地在细胞内恢复氧化还原平衡,而与它在细胞外电子传递途径中的作用无关。这些数据表明,DHNA 的产生可能代表了 在没有呼吸有利条件下驱动能量代谢的另一种代谢适应性。