Martínez-Salazar Joel, Toledano-Toledano Filiberto
Unidad de Investigación en Medicina Basada en Evidencias, Hospital Infantil de México Federico Gómez, Instituto Nacional de Salud, Dr. Márquez 162, Doctores, Cuauhtémoc, Mexico City 06720, Mexico.
Unidad de Investigación Multidisciplinaria en Salud, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico.
Cancers (Basel). 2023 Sep 20;15(18):4649. doi: 10.3390/cancers15184649.
Predictive models play a crucial role in RBMs to analyze performance indicator results to manage unexpected events and make timely decisions to resolve them. Their use in Mexico is deficient, and monitoring and evaluation are among the weakest pillars of the model. In response to these needs, the aim of this study was to perform a comparative analysis of three predictive models to analyze 10 medical performance indicators and cancer data related to children with cancer. To accomplish these purposes, a comparative and retrospective study with nonprobabilistic convenience sampling was conducted. The predictive models were exponential smoothing, autoregressive integrated moving average, and linear regression. The lowest mean absolute error was used to identify the best model. Linear regression performed best regarding nine of the ten indicators, with seven showing < 0.05. Three of their assumptions were checked using the Shapiro-Wilk, Cook's distance, and Breusch-Pagan tests. Predictive models with RBM are a valid and relevant instrument for monitoring and evaluating performance indicator results to support forecasting and decision-making based on evidence and must be promoted for use with cancer data statistics. The place numbers obtained by cancer disease inside the main causes of death, morbidity and hospital outpatients in a National Institute of Health were presented as evidence of the importance of implementing performance indicators associated with children with cancer.
预测模型在基于风险的监测(RBM)中发挥着关键作用,用于分析绩效指标结果,以管理突发事件并及时做出决策加以解决。它们在墨西哥的应用存在不足,监测和评估是该模型最薄弱的环节之一。针对这些需求,本研究的目的是对三种预测模型进行比较分析,以分析10项医疗绩效指标以及与癌症患儿相关的癌症数据。为实现这些目标,开展了一项采用非概率便利抽样的比较性回顾研究。预测模型包括指数平滑法、自回归积分移动平均法和线性回归。使用最低平均绝对误差来确定最佳模型。在十个指标中的九个方面,线性回归表现最佳,其中七个指标显示p<0.05。使用夏皮罗-威尔克检验、库克距离检验和布雷斯克-帕甘检验对其三个假设进行了检验。基于风险的监测中的预测模型是监测和评估绩效指标结果的有效且相关的工具,有助于基于证据进行预测和决策,必须推广用于癌症数据统计。在一家国立卫生研究院中,癌症疾病在主要死因、发病率和门诊患者中的排名数字被作为实施与癌症患儿相关绩效指标重要性的证据呈现出来。