School of Public Health and Preventive Medicine, Monash University, Level 4, 553 St. Kilda Road, Melbourne, VIC, 3004, Australia.
Clinical Epidemiology Program, Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, Canada.
BMC Med Res Methodol. 2021 Jun 26;21(1):134. doi: 10.1186/s12874-021-01306-w.
BACKGROUND: The Interrupted Time Series (ITS) is a quasi-experimental design commonly used in public health to evaluate the impact of interventions or exposures. Multiple statistical methods are available to analyse data from ITS studies, but no empirical investigation has examined how the different methods compare when applied to real-world datasets. METHODS: A random sample of 200 ITS studies identified in a previous methods review were included. Time series data from each of these studies was sought. Each dataset was re-analysed using six statistical methods. Point and confidence interval estimates for level and slope changes, standard errors, p-values and estimates of autocorrelation were compared between methods. RESULTS: From the 200 ITS studies, including 230 time series, 190 datasets were obtained. We found that the choice of statistical method can importantly affect the level and slope change point estimates, their standard errors, width of confidence intervals and p-values. Statistical significance (categorised at the 5% level) often differed across the pairwise comparisons of methods, ranging from 4 to 25% disagreement. Estimates of autocorrelation differed depending on the method used and the length of the series. CONCLUSIONS: The choice of statistical method in ITS studies can lead to substantially different conclusions about the impact of the interruption. Pre-specification of the statistical method is encouraged, and naive conclusions based on statistical significance should be avoided.
背景:中断时间序列(ITS)是公共卫生领域中常用的一种准实验设计,用于评估干预措施或暴露因素的影响。有多种统计方法可用于分析 ITS 研究的数据,但尚无实证研究检验当应用于真实数据集时,不同方法的比较结果。
方法:本研究纳入了先前方法学综述中确定的 200 项 ITS 研究的随机样本。这些研究中的每一项都寻求了时间序列数据。使用六种统计方法重新分析了每个数据集。比较了方法之间的水平和斜率变化点估计值、置信区间和 p 值的标准误差以及自相关估计值。
结果:从 200 项 ITS 研究中,包括 230 个时间序列,共获得了 190 个数据集。我们发现,统计方法的选择会重要影响水平和斜率变化点估计值、其标准误差、置信区间的宽度和 p 值。方法之间的两两比较中,统计学意义(在 5%水平上分类)通常存在差异,差异范围为 4%至 25%。自相关的估计值取决于所使用的方法和序列的长度。
结论:ITS 研究中统计方法的选择可能会导致对中断影响的结论大不相同。鼓励对统计方法进行预先指定,并避免基于统计学意义的盲目结论。
BMC Med Res Methodol. 2021-6-26
BMC Med Res Methodol. 2024-2-10
BMC Med Res Methodol. 2021-8-28
Cochrane Database Syst Rev. 2022-2-1
Int J Epidemiol. 2017-2-1
Nat Commun. 2025-5-30
Ther Innov Regul Sci. 2025-4-22
BMC Med Res Methodol. 2025-4-16
Ophthalmol Sci. 2025-1-27
Iran J Public Health. 2025-1
Drug Alcohol Rev. 2025-3
BMC Med Res Methodol. 2021-8-28
Res Synth Methods. 2021-1
J Multidiscip Healthc. 2020-5-13
BMC Med Res Methodol. 2019-7-4
J Eval Clin Pract. 2018-5-11