Suppr超能文献

使用先进视觉变换器增强宫颈癌前病变分类

Enhancing Cervical Pre-Cancerous Classification Using Advanced Vision Transformer.

作者信息

Darwish Manal, Altabel Mohamad Ziad, Abiyev Rahib H

机构信息

Department of Computer Engineering, Applied Artificial Intelligence Research Centre, Near East University, Mersin 10, 99138 Nicosia, Turkey.

出版信息

Diagnostics (Basel). 2023 Sep 8;13(18):2884. doi: 10.3390/diagnostics13182884.

Abstract

One of the most common types of cancer among in women is cervical cancer. Incidence and fatality rates are steadily rising, particularly in developing nations, due to a lack of screening facilities, experienced specialists, and public awareness. Visual inspection is used to screen for cervical cancer after the application of acetic acid (VIA), histopathology test, Papanicolaou (Pap) test, and human papillomavirus (HPV) test. The goal of this research is to employ a vision transformer (ViT) enhanced with shifted patch tokenization (SPT) techniques to create an integrated and robust system for automatic cervix-type identification. A vision transformer enhanced with shifted patch tokenization is used in this work to learn the distinct features between the three different cervical pre-cancerous types. The model was trained and tested on 8215 colposcopy images of the three types, obtained from the publicly available mobile-ODT dataset. The model was tested on 30% of the whole dataset and it showed a good generalization capability of 91% accuracy. The state-of-the art comparison indicated the outperformance of our model. The experimental results show that the suggested system can be employed as a decision support tool in the detection of the cervical pre-cancer transformation zone, particularly in low-resource settings with limited experience and resources.

摘要

宫颈癌是女性中最常见的癌症类型之一。由于缺乏筛查设施、经验丰富的专家以及公众意识,其发病率和死亡率正在稳步上升,在发展中国家尤其如此。在应用醋酸后,通过肉眼检查(VIA)、组织病理学检查、巴氏(Pap)检查和人乳头瘤病毒(HPV)检查来筛查宫颈癌。本研究的目的是采用一种通过移位补丁令牌化(SPT)技术增强的视觉变换器(ViT),以创建一个用于自动宫颈类型识别的集成且强大的系统。在这项工作中,使用了通过移位补丁令牌化增强的视觉变换器来学习三种不同宫颈癌前病变类型之间的独特特征。该模型在从公开可用的移动ODT数据集中获取的8215张三种类型的阴道镜图像上进行了训练和测试。该模型在整个数据集的30%上进行了测试,显示出91%准确率的良好泛化能力。与现有技术的比较表明我们的模型表现更优。实验结果表明,所建议的系统可作为检测宫颈癌前病变转化区的决策支持工具,特别是在经验和资源有限的低资源环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ee/10529431/dc7869da486e/diagnostics-13-02884-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验