Suppr超能文献

基于自然启发式小批量水波群优化的可逆稀疏模糊小波变换的医学图像去噪

Medical Image Despeckling Using the Invertible Sparse Fuzzy Wavelet Transform with Nature-Inspired Minibatch Water Wave Swarm Optimization.

作者信息

Amarnath Ahila, Manoharan Poongodi, Natarajan Buvaneswari, Alroobaea Roobaea, Alsafyani Majed, Baqasah Abdullah M, Keshta Ismail, Raahemifar Kaamran

机构信息

Indian Institute of Technology, Madras, Chennai 600036, Tamilnadu, India.

College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar.

出版信息

Diagnostics (Basel). 2023 Sep 12;13(18):2919. doi: 10.3390/diagnostics13182919.

Abstract

Speckle noise is a pervasive problem in medical imaging, and conventional methods for despeckling often lead to loss of edge information due to smoothing. To address this issue, we propose a novel approach that combines a nature-inspired minibatch water wave swarm optimization (NIMWVSO) framework with an invertible sparse fuzzy wavelet transform (ISFWT) in the frequency domain. The ISFWT learns a non-linear redundant transform with a perfect reconstruction property that effectively removes noise while preserving structural and edge information in medical images. The resulting threshold is then used by the NIMWVSO to further reduce multiplicative speckle noise. Our approach was evaluated using the MSTAR dataset, and objective functions were based on two contrasting reference metrics, namely the peak signal-to-noise ratio (PSNR) and the mean structural similarity index metric (MSSIM). Our results show that the suggested approach outperforms modern filters and has significant generalization ability to unknown noise levels, while also being highly interpretable. By providing a new framework for despeckling medical images, our work has the potential to improve the accuracy and reliability of medical imaging diagnosis and treatment planning.

摘要

散斑噪声是医学成像中普遍存在的问题,传统的去噪方法由于平滑处理往往会导致边缘信息丢失。为了解决这个问题,我们提出了一种新颖的方法,该方法在频域中将自然启发式小批量水波群优化(NIMWVSO)框架与可逆稀疏模糊小波变换(ISFWT)相结合。ISFWT学习一种具有完美重构特性的非线性冗余变换,该变换在保留医学图像结构和边缘信息的同时有效去除噪声。然后,NIMWVSO使用得到的阈值进一步降低乘性散斑噪声。我们使用MSTAR数据集对我们的方法进行了评估,目标函数基于两个对比参考指标,即峰值信噪比(PSNR)和平均结构相似性指数度量(MSSIM)。我们的结果表明,所提出的方法优于现代滤波器,对未知噪声水平具有显著的泛化能力,同时还具有高度的可解释性。通过为医学图像去噪提供一个新的框架,我们的工作有可能提高医学成像诊断和治疗计划的准确性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9cb/10529025/689488a6fb30/diagnostics-13-02919-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验