一种使用YOLOv5进行肠道寄生虫卵检测的高效框架。

An Efficient and Effective Framework for Intestinal Parasite Egg Detection Using YOLOv5.

作者信息

Kumar Satish, Arif Tasleem, Ahamad Gulfam, Chaudhary Anis Ahmad, Khan Salahuddin, Ali Mohamed A M

机构信息

Department of Information Technology, BGSB University, Rajouri 185131, India.

Department of Computer Sciences, Baba Ghulam Shah Badshah University, Rajouri 185131, India.

出版信息

Diagnostics (Basel). 2023 Sep 18;13(18):2978. doi: 10.3390/diagnostics13182978.

Abstract

Intestinal parasitic infections pose a grave threat to human health, particularly in tropical and subtropical regions. The traditional manual microscopy system of intestinal parasite detection remains the gold standard procedure for diagnosing parasite cysts or eggs. This approach is costly, time-consuming (30 min per sample), highly tedious, and requires a specialist. However, computer vision, based on deep learning, has made great strides in recent years. Despite the significant advances in deep convolutional neural network-based architectures, little research has been conducted to explore these techniques' potential in parasitology, specifically for intestinal parasites. This research presents a novel proposal for state-of-the-art transfer learning architecture for the detection and classification of intestinal parasite eggs from images. The ultimate goal is to ensure prompt treatment for patients while also alleviating the burden on experts. Our approach comprised two main stages: image pre-processing and augmentation in the first stage, and YOLOv5 algorithms for detection and classification in the second stage, followed by performance comparison based on different parameters. Remarkably, our algorithms achieved a mean average precision of approximately 97% and a detection time of only 8.5 ms per sample for a dataset of 5393 intestinal parasite images. This innovative approach holds tremendous potential to form a solid theoretical basis for real-time detection and classification in routine clinical examinations, addressing the increasing demand and accelerating the diagnostic process. Our research contributes to the development of cutting-edge technologies for the efficient and accurate detection of intestinal parasite eggs, advancing the field of medical imaging and diagnosis.

摘要

肠道寄生虫感染对人类健康构成严重威胁,尤其是在热带和亚热带地区。传统的肠道寄生虫检测手工显微镜系统仍然是诊断寄生虫囊肿或虫卵的金标准程序。这种方法成本高、耗时(每个样本30分钟)、非常繁琐,并且需要专家操作。然而,近年来基于深度学习的计算机视觉取得了长足的进步。尽管基于深度卷积神经网络的架构取得了重大进展,但很少有研究探索这些技术在寄生虫学中的潜力,特别是对于肠道寄生虫。本研究提出了一种新颖的建议,即采用先进的迁移学习架构对图像中的肠道寄生虫卵进行检测和分类。最终目标是确保患者得到及时治疗,同时减轻专家的负担。我们的方法包括两个主要阶段:第一阶段进行图像预处理和增强,第二阶段使用YOLOv5算法进行检测和分类,然后基于不同参数进行性能比较。值得注意的是,对于一个包含5393张肠道寄生虫图像的数据集,我们的算法实现了约97%的平均精度,每个样本的检测时间仅为8.5毫秒。这种创新方法具有巨大潜力,可为常规临床检查中的实时检测和分类奠定坚实的理论基础,满足日益增长的需求并加速诊断过程。我们的研究有助于开发用于高效准确检测肠道寄生虫卵的前沿技术,推动医学成像和诊断领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba57/10527934/8db06005b494/diagnostics-13-02978-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索