Suppr超能文献

基于改进猎豹优化算法的多无人机协同轨迹规划

Multi-UAV Cooperative Trajectory Planning Based on the Modified Cheetah Optimization Algorithm.

作者信息

Fu Yuwen, Yang Shuai, Liu Bo, Xia E, Huang Duan

机构信息

School of Automation, Central South University, Changsha 410017, China.

School of Software Engineering, South China University of Technology, Guangzhou 510641, China.

出版信息

Entropy (Basel). 2023 Aug 30;25(9):1277. doi: 10.3390/e25091277.

Abstract

The capacity for autonomous functionality serves as the fundamental ability and driving force for the cross-generational upgrading of unmanned aerial vehicles (UAVs). With the disruptive transformation of artificial intelligence technology, autonomous trajectory planning based on intelligent algorithms has emerged as a key technique for enhancing UAVs' capacity for autonomous behavior, thus holding significant research value. To address the challenges of UAV trajectory planning in complex 3D environments, this paper proposes a multi-UAV cooperative trajectory-planning method based on a Modified Cheetah Optimization (MCO) algorithm. Firstly, a spatiotemporal cooperative trajectory planning model is established, incorporating UAV-cooperative constraints and performance constraints. Evaluation criteria, including fuel consumption, altitude, and threat distribution field cost functions, are introduced. Then, based on its parent Cheetah Optimization (CO) algorithm, the MCO algorithm incorporates a logistic chaotic mapping strategy and an adaptive search agent strategy, thereby improving the home-returning mechanism. Finally, extensive simulation experiments are conducted using a considerably large test dataset containing functions with the following four characteristics: unimodal, multimodal, separable, and inseparable. Meanwhile, a strategy for dimensionality reduction searching is employed to solve the problem of autonomous trajectory planning in real-world scenarios. The results of a conducted simulation demonstrate that the MCO algorithm outperforms several other related algorithms, showcasing smaller trajectory costs, a faster convergence speed, and stabler performance. The proposed algorithm exhibits a certain degree of correctness, effectiveness, and advancement in solving the problem of multi-UAV cooperative trajectory planning.

摘要

自主功能能力是无人机(UAV)跨代升级的基本能力和驱动力。随着人工智能技术的颠覆性变革,基于智能算法的自主轨迹规划已成为提升无人机自主行为能力的关键技术,具有重要的研究价值。为应对复杂三维环境下无人机轨迹规划的挑战,本文提出一种基于改进猎豹优化(MCO)算法的多无人机协同轨迹规划方法。首先,建立了时空协同轨迹规划模型,纳入了无人机协同约束和性能约束。引入了包括燃料消耗、高度和威胁分布场成本函数等评估标准。然后,MCO算法在其母算法猎豹优化(CO)算法的基础上,融入了逻辑混沌映射策略和自适应搜索代理策略,从而改进了返航机制。最后,使用一个包含具有单峰、多峰、可分离和不可分离这四个特征的函数的相当大的测试数据集进行了广泛的仿真实验。同时,采用降维搜索策略来解决实际场景中的自主轨迹规划问题。进行的仿真结果表明,MCO算法优于其他几种相关算法,具有更小的轨迹成本、更快的收敛速度和更稳定的性能。该算法在解决多无人机协同轨迹规划问题上具有一定的正确性、有效性和先进性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e0/10529251/dde6fdf817c4/entropy-25-01277-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验