Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia.
Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
Int J Mol Sci. 2023 Sep 19;24(18):14258. doi: 10.3390/ijms241814258.
Plasminogen (Plg) is the inactive form of plasmin (Plm) that exists in two major glycoforms, referred to as glycoforms I and II (GI and GII). In the circulation, Plg assumes an activation-resistant "closed" conformation via interdomain interactions and is mediated by the lysine binding site (LBS) on the kringle (KR) domains. These inter-domain interactions can be readily disrupted when Plg binds to lysine/arginine residues on protein targets or free L-lysine and analogues. This causes Plg to convert into an "open" form, which is crucial for activation by host activators. In this study, we investigated how various ligands affect the kinetics of Plg conformational change using small-angle X-ray scattering (SAXS). We began by examining the open and closed conformations of Plg using size-exclusion chromatography (SEC) coupled with SAXS. Next, we developed a high-throughput (HTP) 96-well SAXS assay to study the conformational change of Plg. This method enables us to determine the value, which is used to directly compare the effect of different ligands on Plg conformation. Based on our analysis using Plg GII, we have found that the of ε-aminocaproic acid (EACA) is approximately three times greater than that of tranexamic acid (TXA), which is widely recognized as a highly effective ligand. We demonstrated further that Plg undergoes a conformational change when it binds to the C-terminal peptides of the inhibitor α2-antiplasmin (α2AP) and receptor Plg-R. Our findings suggest that in addition to the C-terminal lysine, internal lysine(s) are also necessary for the formation of open Plg. Finally, we compared the conformational changes of Plg GI and GII directly and found that the closed form of GI, which has an N-linked glycosylation, is less stable. To summarize, we have successfully determined the response of Plg to various ligand/receptor peptides by directly measuring the kinetics of its conformational changes.
纤溶酶原(Plg)是纤溶酶(Plm)的无活性形式,存在于两种主要的糖型中,称为糖型 I 和 II(GI 和 GII)。在循环中,Plg 通过结构域间相互作用呈现出一种激活抗性的“封闭”构象,并由kringle(KR)结构域上的赖氨酸结合位点(LBS)介导。当 Plg 与蛋白质靶标上的赖氨酸/精氨酸残基或游离 L-赖氨酸及其类似物结合时,这些结构域间相互作用很容易被破坏。这导致 Plg 转化为“开放”形式,这对于宿主激活剂的激活至关重要。在这项研究中,我们使用小角 X 射线散射(SAXS)研究了各种配体如何影响 Plg 构象变化的动力学。我们首先使用尺寸排阻色谱(SEC)与 SAXS 结合来检查 Plg 的开放和封闭构象。接下来,我们开发了一种高通量(HTP)96 孔 SAXS 测定法来研究 Plg 的构象变化。这种方法使我们能够确定 值,该值可直接比较不同配体对 Plg 构象的影响。基于我们对 Plg GII 的分析,我们发现 ε-氨基己酸(EACA)的 值大约是氨甲环酸(TXA)的三倍,TXA 被广泛认为是一种非常有效的配体。我们进一步证明,当 Plg 与抑制剂 α2-抗纤溶酶(α2AP)和受体 Plg-R 的 C 末端肽结合时,它会发生构象变化。我们的研究结果表明,除了 C 末端赖氨酸外,内部赖氨酸也需要形成开放的 Plg。最后,我们直接比较了 Plg GI 和 GII 的构象变化,发现具有 N 连接糖基化的 GI 的封闭形式不太稳定。总之,我们通过直接测量其构象变化的动力学,成功地确定了 Plg 对各种配体/受体肽的反应。