Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK.
Int J Mol Sci. 2023 Sep 19;24(18):14290. doi: 10.3390/ijms241814290.
Polo-Like Kinase 1 (PLK1), a key mediator of cell-cycle progression, is associated with poor prognosis and is a therapeutic target in a number of malignancies. Putative phosphorylation sites for PLK1 have been identified on Drosha, the main catalytic component of the microprocessor responsible for miR biogenesis. Several kinases, including GSK3β, p70 S6 kinase, ABL, PAK5, p38 MAPK, CSNK1A1 and ANKRD52-PPP6C, have been shown to phosphorylate components of the miR biogenesis machinery, altering their activity and/or localisation, and therefore the biogenesis of distinct miR subsets. We hypothesised that PLK1 regulates miR biogenesis through Drosha phosphorylation. In vitro kinase assays confirmed PLK1 phosphorylation of Drosha at S and/or S. PLK1 inhibition reduced serine-phosphorylated levels of Drosha and its RNA-dependent association with DGCR8. In contrast, a "phospho-mimic" Drosha mutant showed increased association with DGCR8. PLK1 phosphorylation of Drosha alters Drosha Microprocessor complex subcellular localisation, since PLK1 inhibition increased cytosolic protein levels of both DGCR8 and Drosha, whilst nuclear levels were decreased. Importantly, the above effects are independent of PLK1's cell cycle-regulatory role, since altered Drosha:DGCR8 localisation upon PLK1 inhibition occurred prior to significant accumulation of cells in M-phase, and PLK1-regulated miRs were not increased in M-phase-arrested cells. Small RNA sequencing and qPCR validation were used to assess downstream consequences of PLK1 activity on miR biogenesis, identifying a set of ten miRs (miR-1248, miR-1306-5p, miR-2277-5p, miR-29c-5p, miR-93-3p, miR-152-3p, miR-509-3-5p, miR-511-5p, miR-891a-5p and miR-892a) whose expression levels were statistically significantly downregulated by two pharmacological PLK1 kinase domain inhibitors, RO-5203280 and GSK461364. Opposingly, increased levels of these miRs were observed upon transfection of wild-type or constitutively active PLK1. Importantly, pre-miR levels were reduced upon PLK1 inhibition, and pri-miR levels decreased upon PLK1 activation, and hence, PLK1 Drosha phosphorylation regulates MiR biogenesis at the level of pri-miR-to-pre-miR processing. In combination with prior studies, this work identifies Drosha S and S as major integration points for signalling by several kinases, whose relative activities will determine the relative biogenesis efficiency of different miR subsets. Identified kinase-regulated miRs have potential for use as kinase inhibitor response-predictive biomarkers, in cancer and other diseases.
丝氨酸苏氨酸激酶 1(PLK1)是细胞周期进程的关键介质,与预后不良相关,是许多恶性肿瘤的治疗靶点。已经在 Drosha 上鉴定出 PLK1 的假定磷酸化位点,Drosha 是负责 miRNA 生物发生的微处理器的主要催化成分。已经表明,包括 GSK3β、p70 S6 激酶、ABL、PAK5、p38 MAPK、CSNK1A1 和 ANKRD52-PPP6C 在内的几种激酶可以磷酸化 miRNA 生物发生机制的成分,改变其活性和/或定位,从而产生不同的 miRNA 子集。我们假设 PLK1 通过 Drosha 磷酸化来调节 miRNA 的生物发生。体外激酶测定证实了 PLK1 在 S 和/或 S 处对 Drosha 的磷酸化。PLK1 抑制降低了 Drosha 的丝氨酸磷酸化水平及其与 DGCR8 的 RNA 依赖性结合。相比之下,“磷酸模拟”Drosha 突变体显示与 DGCR8 的结合增加。PLK1 对 Drosha 的磷酸化改变了 Drosha 微处理器复合物的亚细胞定位,因为 PLK1 抑制增加了 DGCR8 和 Drosha 的细胞质蛋白水平,而核内水平降低。重要的是,上述效应独立于 PLK1 的细胞周期调节作用,因为 PLK1 抑制后 Drosha:DGCR8 定位的改变发生在细胞大量积累到 M 期之前,并且在 M 期阻滞的细胞中,PLK1 调节的 miRNAs 没有增加。使用小 RNA 测序和 qPCR 验证来评估 PLK1 活性对 miRNA 生物发生的下游影响,确定了一组十个 miRNAs(miR-1248、miR-1306-5p、miR-2277-5p、miR-29c-5p、miR-93-3p、miR-152-3p、miR-509-3-5p、miR-511-5p、miR-891a-5p 和 miR-892a)的表达水平被两种药理学 PLK1 激酶结构域抑制剂 RO-5203280 和 GSK461364 显著下调。相反,在转染野生型或组成型激活的 PLK1 时,这些 miRNAs 的水平增加。重要的是,PLK1 抑制后前体 miRNA 水平降低,PLK1 激活后初级 miRNA 水平降低,因此,PLK1 对 Drosha 的磷酸化调节 miRNA 生物发生在初级 miRNA 到前体 miRNA 加工的水平上。结合先前的研究,这项工作确定了丝氨酸和苏氨酸是几种激酶信号的主要整合点,其相对活性将决定不同 miRNA 子集的相对生物发生效率。已鉴定的激酶调节的 miRNAs 有可能用作癌症和其他疾病中激酶抑制剂反应预测性生物标志物。