From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425.
J Biol Chem. 2013 Sep 13;288(37):26785-99. doi: 10.1074/jbc.M112.446880. Epub 2013 Jul 26.
MicroRNA (miRNA) biogenesis follows a conserved succession of processing steps, beginning with the recognition and liberation of an miRNA-containing precursor miRNA hairpin from a large primary miRNA transcript (pri-miRNA) by the Microprocessor, which consists of the nuclear RNase III Drosha and the double-stranded RNA-binding domain protein DGCR8 (DiGeorge syndrome critical region protein 8). Current models suggest that specific recognition is driven by DGCR8 detection of single-stranded elements of the pri-miRNA stem-loop followed by Drosha recruitment and pri-miRNA cleavage. Because countless RNA transcripts feature single-stranded-dsRNA junctions and DGCR8 can bind hundreds of mRNAs, we explored correlations between RNA binding properties of DGCR8 and specific pri-miRNA substrate processing. We found that DGCR8 bound single-stranded, double-stranded, and random hairpin transcripts with similar affinity. Further investigation of DGCR8/pri-mir-16 interactions by NMR detected intermediate exchange regimes over a wide range of stoichiometric ratios. Diffusion analysis of DGCR8/pri-mir-16 interactions by pulsed field gradient NMR lent further support to dynamic complex formation involving free components in exchange with complexes of varying stoichiometry, although in vitro processing assays showed exclusive cleavage of pri-mir-16 variants bearing single-stranded flanking regions. Our results indicate that DGCR8 binds RNA nonspecifically. Therefore, a sequential model of DGCR8 recognition followed by Drosha recruitment is unlikely. Known RNA substrate requirements are broad and include 70-nucleotide hairpins with unpaired flanking regions. Thus, specific RNA processing is likely facilitated by preformed DGCR8-Drosha heterodimers that can discriminate between authentic substrates and other hairpins.
微 RNA (miRNA) 的生物发生遵循一系列保守的加工步骤,首先由 Microprocessor 识别并释放 miRNA 包含的前体 miRNA 发夹,Microprocessor 由核 RNase III Drosha 和双链 RNA 结合域蛋白 DGCR8(DiGeorge 综合征关键区域蛋白 8)组成。目前的模型表明,特异性识别是由 DGCR8 检测 pri-miRNA 茎环中的单链元件驱动的,随后 Drosha 招募和 pri-miRNA 切割。由于无数 RNA 转录本都具有单链-dsRNA 接头,并且 DGCR8 可以结合数百个 mRNA,因此我们探讨了 DGCR8 的 RNA 结合特性与特定 pri-miRNA 底物加工之间的相关性。我们发现,DGCR8 与单链、双链和随机发夹转录本的结合亲和力相似。通过 NMR 进一步研究 DGCR8/pri-mir-16 相互作用,在广泛的化学计量比范围内检测到中间交换区。通过脉冲场梯度 NMR 对 DGCR8/pri-mir-16 相互作用的扩散分析进一步支持了涉及自由成分与不同化学计量比复合物之间交换的动态复合物形成,尽管体外加工实验表明仅切割具有单链侧翼区域的 pri-mir-16 变体。我们的结果表明,DGCR8 非特异性地结合 RNA。因此,DGCR8 识别 followed by Drosha 招募的顺序模型不太可能。已知的 RNA 底物要求广泛,包括带有未配对侧翼区域的 70 个核苷酸发夹。因此,特定的 RNA 加工可能是由预先形成的 DGCR8-Drosha 异二聚体促进的,该异二聚体可以区分真实底物和其他发夹。