Suppr超能文献

核心微处理器组件 DiGeorge 综合征关键区 8(DGCR8)是一种非特异性 RNA 结合蛋白。

The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.

机构信息

From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425.

出版信息

J Biol Chem. 2013 Sep 13;288(37):26785-99. doi: 10.1074/jbc.M112.446880. Epub 2013 Jul 26.

Abstract

MicroRNA (miRNA) biogenesis follows a conserved succession of processing steps, beginning with the recognition and liberation of an miRNA-containing precursor miRNA hairpin from a large primary miRNA transcript (pri-miRNA) by the Microprocessor, which consists of the nuclear RNase III Drosha and the double-stranded RNA-binding domain protein DGCR8 (DiGeorge syndrome critical region protein 8). Current models suggest that specific recognition is driven by DGCR8 detection of single-stranded elements of the pri-miRNA stem-loop followed by Drosha recruitment and pri-miRNA cleavage. Because countless RNA transcripts feature single-stranded-dsRNA junctions and DGCR8 can bind hundreds of mRNAs, we explored correlations between RNA binding properties of DGCR8 and specific pri-miRNA substrate processing. We found that DGCR8 bound single-stranded, double-stranded, and random hairpin transcripts with similar affinity. Further investigation of DGCR8/pri-mir-16 interactions by NMR detected intermediate exchange regimes over a wide range of stoichiometric ratios. Diffusion analysis of DGCR8/pri-mir-16 interactions by pulsed field gradient NMR lent further support to dynamic complex formation involving free components in exchange with complexes of varying stoichiometry, although in vitro processing assays showed exclusive cleavage of pri-mir-16 variants bearing single-stranded flanking regions. Our results indicate that DGCR8 binds RNA nonspecifically. Therefore, a sequential model of DGCR8 recognition followed by Drosha recruitment is unlikely. Known RNA substrate requirements are broad and include 70-nucleotide hairpins with unpaired flanking regions. Thus, specific RNA processing is likely facilitated by preformed DGCR8-Drosha heterodimers that can discriminate between authentic substrates and other hairpins.

摘要

微 RNA (miRNA) 的生物发生遵循一系列保守的加工步骤,首先由 Microprocessor 识别并释放 miRNA 包含的前体 miRNA 发夹,Microprocessor 由核 RNase III Drosha 和双链 RNA 结合域蛋白 DGCR8(DiGeorge 综合征关键区域蛋白 8)组成。目前的模型表明,特异性识别是由 DGCR8 检测 pri-miRNA 茎环中的单链元件驱动的,随后 Drosha 招募和 pri-miRNA 切割。由于无数 RNA 转录本都具有单链-dsRNA 接头,并且 DGCR8 可以结合数百个 mRNA,因此我们探讨了 DGCR8 的 RNA 结合特性与特定 pri-miRNA 底物加工之间的相关性。我们发现,DGCR8 与单链、双链和随机发夹转录本的结合亲和力相似。通过 NMR 进一步研究 DGCR8/pri-mir-16 相互作用,在广泛的化学计量比范围内检测到中间交换区。通过脉冲场梯度 NMR 对 DGCR8/pri-mir-16 相互作用的扩散分析进一步支持了涉及自由成分与不同化学计量比复合物之间交换的动态复合物形成,尽管体外加工实验表明仅切割具有单链侧翼区域的 pri-mir-16 变体。我们的结果表明,DGCR8 非特异性地结合 RNA。因此,DGCR8 识别 followed by Drosha 招募的顺序模型不太可能。已知的 RNA 底物要求广泛,包括带有未配对侧翼区域的 70 个核苷酸发夹。因此,特定的 RNA 加工可能是由预先形成的 DGCR8-Drosha 异二聚体促进的,该异二聚体可以区分真实底物和其他发夹。

相似文献

1
The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.
J Biol Chem. 2013 Sep 13;288(37):26785-99. doi: 10.1074/jbc.M112.446880. Epub 2013 Jul 26.
2
A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting.
RNA. 2016 Feb;22(2):175-83. doi: 10.1261/rna.054684.115. Epub 2015 Dec 18.
4
Structural Basis for pri-miRNA Recognition by Drosha.
Mol Cell. 2020 May 7;78(3):423-433.e5. doi: 10.1016/j.molcel.2020.02.024. Epub 2020 Mar 27.
6
The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin.
Cell Rep. 2014 Jun 26;7(6):1994-2005. doi: 10.1016/j.celrep.2014.05.013. Epub 2014 Jun 6.
7
Post-transcriptional control of DGCR8 expression by the Microprocessor.
RNA. 2009 Jun;15(6):1005-11. doi: 10.1261/rna.1591709. Epub 2009 Apr 21.
8
Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA.
Mol Cell. 2020 May 7;78(3):411-422.e4. doi: 10.1016/j.molcel.2020.02.016. Epub 2020 Mar 27.
10
Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing.
Nucleic Acids Res. 2006;34(16):4622-9. doi: 10.1093/nar/gkl458. Epub 2006 Sep 8.

引用本文的文献

1
Dgcr8 functions in the secondary heart field for outflow tract and right ventricle development in mammals.
Dev Biol. 2024 Feb;506:72-84. doi: 10.1016/j.ydbio.2023.12.005. Epub 2023 Dec 17.
3
CtIP suppresses primary microRNA maturation and promotes metastasis of colon cancer cells in a xenograft mouse model.
J Biol Chem. 2021 Jan-Jun;296:100707. doi: 10.1016/j.jbc.2021.100707. Epub 2021 Apr 24.
4
Elucidating the Role of Microprocessor Protein DGCR8 in Bending RNA Structures.
Biophys J. 2020 Dec 15;119(12):2524-2536. doi: 10.1016/j.bpj.2020.10.038. Epub 2020 Nov 13.
5
Macrocyclization of a Ligand Targeting a Toxic RNA Dramatically Improves Potency.
Chembiochem. 2020 Nov 16;21(22):3229-3233. doi: 10.1002/cbic.202000445. Epub 2020 Aug 26.
6
The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation.
Cells. 2019 Nov 19;8(11):1465. doi: 10.3390/cells8111465.
7
Salt Dependence of A-Form RNA Duplexes: Structures and Implications.
J Phys Chem B. 2019 Nov 21;123(46):9773-9785. doi: 10.1021/acs.jpcb.9b07502. Epub 2019 Nov 11.
8
The Regulatory Role of MicroRNAs in Breast Cancer.
Int J Mol Sci. 2019 Oct 6;20(19):4940. doi: 10.3390/ijms20194940.
9
Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis.
Nat Commun. 2019 Jul 26;10(1):3329. doi: 10.1038/s41467-019-10831-8.
10
ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.
Nucleic Acids Res. 2017 Nov 2;45(19):11004-11018. doi: 10.1093/nar/gkx756.

本文引用的文献

2
ATP-independent diffusion of double-stranded RNA binding proteins.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):151-6. doi: 10.1073/pnas.1212917110. Epub 2012 Dec 18.
4
Use of a water flip-back pulse in the homonuclear NOESY experiment.
J Biomol NMR. 1995 Apr;5(3):327-31. doi: 10.1007/BF00211762.
5
DGCR8 HITS-CLIP reveals novel functions for the Microprocessor.
Nat Struct Mol Biol. 2012 Aug;19(8):760-6. doi: 10.1038/nsmb.2344. Epub 2012 Jul 15.
6
Backbone ¹HN, ¹³C, and ¹⁵N resonance assignments of the tandem RNA-binding domains of human DGCR8.
Biomol NMR Assign. 2013 Oct;7(2):183-6. doi: 10.1007/s12104-012-9406-x. Epub 2012 Jul 3.
7
Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1919-24. doi: 10.1073/pnas.1114514109. Epub 2012 Jan 23.
8
Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8.
EMBO Rep. 2012 Feb 1;13(2):142-9. doi: 10.1038/embor.2011.247.
9
DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein.
J Biol Chem. 2011 May 13;286(19):16716-25. doi: 10.1074/jbc.M110.180844. Epub 2011 Mar 21.
10
microRNAs in rheumatoid arthritis: midget RNAs with a giant impact.
Ann Rheum Dis. 2011 Mar;70 Suppl 1:i92-6. doi: 10.1136/ard.2010.140152.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验