Othman Ehsan, Werner Philipp, Saxen Frerk, Al-Hamadi Ayoub, Gruss Sascha, Walter Steffen
Department of Neuro-Information Technology, Institute for Information Technology and Communications, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany.
Department of Medical Psychology, Ulm University, 89081 Ulm, Germany.
Life (Basel). 2023 Aug 29;13(9):1828. doi: 10.3390/life13091828.
This study focuses on improving healthcare quality by introducing an automated system that continuously monitors patient pain intensity. The system analyzes the Electrodermal Activity (EDA) sensor modality modality, compares the results obtained from both EDA and facial expressions modalities, and late fuses EDA and facial expressions modalities. This work extends our previous studies of pain intensity monitoring via an expanded analysis of the two informative methods. The EDA sensor modality and facial expression analysis play a prominent role in pain recognition; the extracted features reflect the patient's responses to different pain levels. Three different approaches were applied: Random Forest (RF) baseline methods, Long-Short Term Memory Network (LSTM), and LSTM with the sample-weighting method (LSTM-SW). Evaluation metrics included Micro average F1-score for classification and Mean Squared Error (MSE) and intraclass correlation coefficient (ICC [3, 1]) for both classification and regression. The results highlight the effectiveness of late fusion for EDA and facial expressions, particularly in almost balanced datasets (Micro average F1-score around 61%, ICC about 0.35). EDA regression models, particularly LSTM and LSTM-SW, showed superiority in imbalanced datasets and outperformed guessing (where the majority of votes indicate no pain) and baseline methods (RF indicates Random Forest classifier (RFc) and Random Forest regression (RFr)). In conclusion, by integrating both modalities or utilizing EDA, they can provide medical centers with reliable and valuable insights into patients' pain experiences and responses.
本研究聚焦于通过引入一个持续监测患者疼痛强度的自动化系统来提高医疗质量。该系统分析皮肤电活动(EDA)传感器模态,比较从EDA和面部表情模态获得的结果,并对EDA和面部表情模态进行后期融合。这项工作通过对这两种信息方法的扩展分析,扩展了我们之前关于疼痛强度监测的研究。EDA传感器模态和面部表情分析在疼痛识别中发挥着重要作用;提取的特征反映了患者对不同疼痛水平的反应。应用了三种不同的方法:随机森林(RF)基线方法、长短期记忆网络(LSTM)以及采用样本加权方法的LSTM(LSTM-SW)。评估指标包括用于分类的微平均F1分数以及用于分类和回归的均方误差(MSE)和组内相关系数(ICC[3,1])。结果突出了对EDA和面部表情进行后期融合的有效性,特别是在几乎平衡的数据集(微平均F1分数约为61%,ICC约为0.35)中。EDA回归模型,特别是LSTM和LSTM-SW,在不平衡数据集中表现出优势,并且优于猜测(其中大多数投票表明无疼痛)和基线方法(RF表示随机森林分类器(RFc)和随机森林回归(RFr))。总之,通过整合这两种模态或利用EDA,它们可以为医疗中心提供关于患者疼痛体验和反应的可靠且有价值的见解。