Suppr超能文献

基于皮肤电活动差异特征的敏感生理疼痛指标。

Sensitive Physiological Indices of Pain Based on Differential Characteristics of Electrodermal Activity.

出版信息

IEEE Trans Biomed Eng. 2021 Oct;68(10):3122-3130. doi: 10.1109/TBME.2021.3065218. Epub 2021 Sep 20.

Abstract

OBJECTIVE

Electrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA has been found to be more sensitive and reproducible for assessment of sympathetic arousal than traditional indices (e.g., tonic and phasic components). However, none of the aforementioned analyses incorporate the differential characteristics of EDA, which could be more sensitive to capturing fast-changing dynamics associated with pain responses.

METHODS

We have tested the feasibility of using the derivative of phasic EDA and the modified time-varying spectral analysis of EDA. Sixteen subjects underwent four levels of pain stimulation using electric stimulation. Five-second segments of EDA were used for each level of stimulation, and pre-stimulation segments were considered stimulation level 0. We used support vector machines with the radial basis function kernel and multi-layer perceptron for three different scenarios of stimulation-level classification tasks: five stimulation levels (four levels of stimulation plus no stimulation); low, medium, and high pain stimulation (stimulation levels 0-1, 2, and 3-4, respectively); and high stimulation levels (stimulation levels 3-4) vs. no stimulation.

RESULTS

The maximum balanced accuracies were 44% (five stimulation levels), 63% (for low, medium, and high pain stimulation), and 87% (sensitivity 83% and specificity 89%, for high stimulation vs. no stimulation).

CONCLUSION

The differential characteristics of EDA contributed highly to the accuracy of pain stimulation level detection of the classifiers. The external validity dataset was not considered in the study.

SIGNIFICANCE

Our approach has the potential for accurate pain quantification using EDA.

摘要

目的

皮肤电活动(EDA)已广泛用于评估人类对包括疼痛在内的应激刺激的反应。最近,EDA 的频谱分析被发现比传统指标(如紧张和相位成分)更能敏感和可重复地评估交感神经兴奋。然而,上述分析均未纳入 EDA 的差异特征,这些特征可能更能敏感地捕捉与疼痛反应相关的快速变化动态。

方法

我们测试了使用相位 EDA 的导数和 EDA 的改进时变频谱分析的可行性。16 名受试者接受了四种不同强度的电刺激疼痛刺激。每个刺激水平使用 5 秒的 EDA 段,刺激前的 EDA 段被认为是刺激水平 0。我们使用带有径向基函数核和多层感知器的支持向量机进行了三种不同的刺激水平分类任务:五个刺激水平(四个刺激水平加无刺激);低、中、高强度疼痛刺激(刺激水平 0-1、2 和 3-4);以及高强度刺激(刺激水平 3-4)与无刺激。

结果

最大平衡准确率分别为 44%(五个刺激水平)、63%(低、中、高强度疼痛刺激)和 87%(高刺激 vs. 无刺激,敏感性 83%,特异性 89%)。

结论

EDA 的差异特征对分类器的疼痛刺激水平检测准确性有很大贡献。研究未考虑外部有效性数据集。

意义

我们的方法有可能使用 EDA 进行准确的疼痛量化。

相似文献

5
Validation of Spectral Indices of Electrodermal Activity with a Wearable Device.基于可穿戴设备的皮肤电导率光谱指数验证。
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6991-6994. doi: 10.1109/EMBC46164.2021.9630005.
8
ComEDA: A new tool for stress assessment based on electrodermal activity.ComEDA:一种基于皮肤电活动的新的应激评估工具。
Comput Biol Med. 2022 Nov;150:106144. doi: 10.1016/j.compbiomed.2022.106144. Epub 2022 Sep 30.

引用本文的文献

1
Pseudo-labeling based adaptations of pain domain classifiers.基于伪标签的疼痛领域分类器适应性调整。
Front Pain Res (Lausanne). 2025 Apr 23;6:1562099. doi: 10.3389/fpain.2025.1562099. eCollection 2025.

本文引用的文献

2
Pain Detection using a Smartphone in Real Time.使用智能手机实时进行疼痛检测。
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4526-4529. doi: 10.1109/EMBC44109.2020.9176077.
8
Feature Extraction of Galvanic Skin Responses by Nonnegative Sparse Deconvolution.基于非负稀疏反卷积的皮肤电反应特征提取。
IEEE J Biomed Health Inform. 2018 Sep;22(5):1385-1394. doi: 10.1109/JBHI.2017.2780252. Epub 2017 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验