Suppr超能文献

一种基于磁共振成像的新型影像组学和临床预测模型,用于非功能性垂体神经内分泌肿瘤术后残留肿瘤的复发

A Novel Magnetic Resonance Imaging-Based Radiomics and Clinical Predictive Model for the Regrowth of Postoperative Residual Tumor in Non-Functioning Pituitary Neuroendocrine Tumor.

作者信息

Shen Chaodong, Liu Xiaoyan, Jin Jinghao, Han Cheng, Wu Lihao, Wu Zerui, Su Zhipeng, Chen Xiaofang

机构信息

Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.

出版信息

Medicina (Kaunas). 2023 Aug 23;59(9):1525. doi: 10.3390/medicina59091525.

Abstract

: To develop a novel magnetic resonance imaging (MRI)-based radiomics-clinical risk stratification model to predict the regrowth of postoperative residual tumors in patients with non-functioning pituitary neuroendocrine tumors (NF-PitNETs). : We retrospectively enrolled 114 patients diagnosed as NF-PitNET with postoperative residual tumors after the first operation, and the diameter of the tumors was greater than 10 mm. Univariate and multivariate analyses were conducted to identify independent clinical risk factors. We identified the optimal sequence to generate an appropriate radiomic score (Rscore) that combined pre- and postoperative radiomic features. Three models were established by logistic regression analysis that combined clinical risk factors and radiomic features (Model 1), single clinical risk factors (Model 2) and single radiomic features (Model 3). The models' predictive performances were evaluated using receiver operator characteristic (ROC) curve analysis and area under curve (AUC) values. A nomogram was developed and evaluated using decision curve analysis. : Knosp classification and preoperative tumor volume doubling time (TVDT) were high-risk factors ( < 0.05) with odds ratios (ORs) of 2.255 and 0.173. T1WI&T1CE had a higher AUC value (0.954) and generated an Rscore. Ultimately, the AUC of Model 1 {0.929 [95% Confidence interval (CI), 0.865-0.993]} was superior to Model 2 [0.811 (95% CI, 0.704-0.918)] and Model 3 [0.844 (95% CI, 0.748-0.941)] in the training set, which were 0.882 (95% CI, 0.735-1.000), 0.834 (95% CI, 0.676-0.992) and 0.763 (95% CI, 0.569-0.958) in the test set, respectively. : We trained a novel radiomics-clinical predictive model for identifying patients with NF-PitNETs at increased risk of postoperative residual tumor regrowth. This model may help optimize individualized and stratified clinical treatment decisions.

摘要

目的

开发一种基于磁共振成像(MRI)的影像组学-临床风险分层模型,以预测无功能垂体神经内分泌肿瘤(NF-PitNETs)患者术后残留肿瘤的复发。

方法

我们回顾性纳入了114例首次手术后诊断为NF-PitNET且有术后残留肿瘤、肿瘤直径大于10 mm的患者。进行单因素和多因素分析以确定独立的临床风险因素。我们确定了生成合适影像组学评分(Rscore)的最佳序列,该评分结合了术前和术后的影像组学特征。通过逻辑回归分析建立了三个模型,分别结合临床风险因素和影像组学特征(模型1)、单一临床风险因素(模型2)和单一影像组学特征(模型3)。使用受试者操作特征(ROC)曲线分析和曲线下面积(AUC)值评估模型的预测性能。开发了列线图并使用决策曲线分析进行评估。

结果

Knosp分级和术前肿瘤体积倍增时间(TVDT)是高危因素(P<0.05),比值比(OR)分别为2.255和0.173。T1WI&T1CE的AUC值较高(0.954)并生成了Rscore。最终,模型1在训练集的AUC{0.929[95%置信区间(CI),0.865-0.993]}优于模型2[0.811(95%CI,0.704-0.918)]和模型3[0.844(95%CI,0.748-0.941)],在测试集分别为0.882(95%CI,0.735-1.000)、0.834(95%CI,0.676-0.992)和0.763(95%CI,0.569-0.958)。

结论

我们训练了一种新型的影像组学-临床预测模型,用于识别NF-PitNETs患者术后残留肿瘤复发风险增加的患者。该模型可能有助于优化个体化和分层的临床治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3af/10535289/7a6a49bc6e94/medicina-59-01525-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验