Suppr超能文献

基于深度学习的蛋白质自组装数字化,用于打印可生物降解的物理不可克隆标签以保障设备安全。

Deep-Learning-Based Digitization of Protein-Self-Assembly to Print Biodegradable Physically Unclonable Labels for Device Security.

作者信息

Pradhan Sayantan, Rajagopala Abhi D, Meno Emma, Adams Stephen, Elks Carl R, Beling Peter A, Yadavalli Vamsi K

机构信息

Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.

Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.

出版信息

Micromachines (Basel). 2023 Aug 28;14(9):1678. doi: 10.3390/mi14091678.

Abstract

The increasingly pervasive problem of counterfeiting affects both individuals and industry. In particular, public health and medical fields face threats to device authenticity and patient privacy, especially in the post-pandemic era. Physical unclonable functions (PUFs) present a modern solution using counterfeit-proof security labels to securely authenticate and identify physical objects. PUFs harness innately entropic information generators to create a unique fingerprint for an authentication protocol. This paper proposes a facile protein self-assembly process as an entropy generator for a unique biological PUF. The posited image digitization process applies a deep learning model to extract a feature vector from the self-assembly image. This is then binarized and debiased to produce a cryptographic key. The NIST SP 800-22 Statistical Test Suite was used to evaluate the randomness of the generated keys, which proved sufficiently stochastic. To facilitate deployment on physical objects, the PUF images were printed on flexible silk-fibroin-based biodegradable labels using functional protein bioinks. Images from the labels were captured using a cellphone camera and referenced against the source image for error rate comparison. The deep-learning-based biological PUF has potential as a low-cost, scalable, highly randomized strategy for anti-counterfeiting technology.

摘要

日益普遍的假冒问题影响着个人和行业。特别是,公共卫生和医疗领域面临着设备真实性和患者隐私方面的威胁,尤其是在疫情后时代。物理不可克隆功能(PUF)提出了一种现代解决方案,即使用防伪安全标签来安全地认证和识别物理对象。PUF利用固有的熵信息生成器为认证协议创建唯一的指纹。本文提出了一种简便的蛋白质自组装过程作为独特生物PUF的熵生成器。假定的图像数字化过程应用深度学习模型从自组装图像中提取特征向量。然后对其进行二值化和去偏处理以生成加密密钥。使用NIST SP 800-22统计测试套件评估生成密钥的随机性,结果证明其具有足够的随机性。为便于在物理对象上部署,使用功能性蛋白质生物墨水将PUF图像打印在基于柔性丝素蛋白的可生物降解标签上。使用手机摄像头捕获标签图像,并与源图像进行比对以比较错误率。基于深度学习的生物PUF作为一种低成本、可扩展、高度随机化的防伪技术策略具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6ea/10535045/e4d39b9dad71/micromachines-14-01678-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验