文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无针静电纺纳米纤维毡的均匀性

Homogeneity of Needleless Electrospun Nanofiber Mats.

作者信息

Morina Edona, Dotter Marius, Döpke Christoph, Kola Ilda, Spahiu Tatjana, Ehrmann Andrea

机构信息

Department of Textile and Fashion, Polytechnic University of Tirana, 1019 Tirana, Albania.

Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany.

出版信息

Nanomaterials (Basel). 2023 Sep 6;13(18):2507. doi: 10.3390/nano13182507.


DOI:10.3390/nano13182507
PMID:37764536
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10535507/
Abstract

Nanofiber mats can be electrospun by different techniques, usually subdivided into needle-based and needleless. The latter allow for producing large-area nanofiber mats, e.g., with a width of 50 cm and lengths of several meters, if electrospinning proceeds for several hours, depending on the required thickness. Even spinning smaller samples, however, raises the question of homogeneity, especially if defined mechanical properties or a defined thickness is required, e.g., for filtration purposes. Very often, only the inner parts of such electrospun nanofiber mats are used to avoid too high variation of the nanofiber mat thickness. For this study, we used wire-based electrospinning to prepare nanofiber mats with slightly varying spinning parameters. We report investigations of the thickness and mass per unit area, measured on different positions of needleless electrospun nanofiber mats. Martindale abrasion tests on different positions are added as a measure of the mechanical properties. All nanofiber mats show unexpectedly strong variations of thickness, mass per unit area, and porosity, as calculated from the apparent density of the membranes. The thickness especially varied by nearly one order of magnitude within one sample, while the apparent density, as the most uniform parameter, still showed variations by more than a factor of two within one sample. This shows that even for apparently highly homogeneous areas of such nanofiber mats, variations cannot be neglected for all potential applications.

摘要

纳米纤维垫可以通过不同的技术进行电纺,通常分为基于针头和无针头两种。如果电纺持续数小时,后者能够制备大面积的纳米纤维垫,例如宽度为50厘米、长度为几米的垫子,这取决于所需的厚度。然而,即使是纺制较小的样品,也会出现均匀性问题,特别是当需要确定的机械性能或确定的厚度时,例如用于过滤目的。通常,为了避免纳米纤维垫厚度变化过大,仅使用这种电纺纳米纤维垫的内部部分。在本研究中,我们使用基于金属丝的电纺技术,通过略微改变纺丝参数来制备纳米纤维垫。我们报告了对无针头电纺纳米纤维垫不同位置的厚度和单位面积质量的研究。此外,还对不同位置进行了马丁代尔耐磨试验,以衡量其机械性能。所有纳米纤维垫的厚度、单位面积质量和孔隙率均呈现出意外的强烈变化,孔隙率是根据膜的表观密度计算得出的。特别是在一个样品中,厚度变化近一个数量级,而作为最均匀参数的表观密度,在一个样品中仍显示出超过两倍的变化。这表明,即使对于这种纳米纤维垫表面上高度均匀的区域,对于所有潜在应用而言,其变化也不能被忽视。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/0b9f74ca2971/nanomaterials-13-02507-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/1e7fb105afbb/nanomaterials-13-02507-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/9c213c83786e/nanomaterials-13-02507-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/5a1088429983/nanomaterials-13-02507-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/af3971b56250/nanomaterials-13-02507-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/e5d30a75af36/nanomaterials-13-02507-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/4387dbb81479/nanomaterials-13-02507-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/8e6c7c53dfb9/nanomaterials-13-02507-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/2feaf0157167/nanomaterials-13-02507-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/0b9f74ca2971/nanomaterials-13-02507-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/1e7fb105afbb/nanomaterials-13-02507-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/9c213c83786e/nanomaterials-13-02507-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/5a1088429983/nanomaterials-13-02507-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/af3971b56250/nanomaterials-13-02507-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/e5d30a75af36/nanomaterials-13-02507-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/4387dbb81479/nanomaterials-13-02507-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/8e6c7c53dfb9/nanomaterials-13-02507-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/2feaf0157167/nanomaterials-13-02507-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e791/10535507/0b9f74ca2971/nanomaterials-13-02507-g009.jpg

相似文献

[1]
Homogeneity of Needleless Electrospun Nanofiber Mats.

Nanomaterials (Basel). 2023-9-6

[2]
Electrospinning Nanofiber Mats with Magnetite Nanoparticles Using Various Needle-Based Techniques.

Polymers (Basel). 2022-1-28

[3]
Suitability of Mycelium-Reinforced Nanofiber Mats for Filtration of Different Dyes.

Polymers (Basel). 2023-9-29

[4]
Preliminary Study of Ultrasonic Welding as a Joining Process for Electrospun Nanofiber Mats.

Nanomaterials (Basel). 2018-9-20

[5]
Stabilization of Electrospun Nanofiber Mats Used for Filters by 3D Printing.

Polymers (Basel). 2019-10-6

[6]
Acrylonitrile and Pullulan Based Nanofiber Mats as Easily Accessible Scaffolds for 3D Skin Cell Models Containing Primary Cells.

Cells. 2022-1-27

[7]
Uniform-thickness electrospun nanofiber mat production system based on real-time thickness measurement.

Sci Rep. 2020-11-30

[8]
Magnetic Nanofiber Mats for Data Storage and Transfer.

Nanomaterials (Basel). 2019-1-12

[9]
Electrospun Nanofiber Mats as "Smart Surfaces" for Desorption Electrospray Ionization Mass Spectrometry (DESI MS)-Based Analysis and Imprint Imaging.

Anal Chem. 2016-5-17

[10]
Magnetic Properties of Electrospun Magnetic Nanofiber Mats after Stabilization and Carbonization.

Materials (Basel). 2020-3-27

引用本文的文献

[1]
Electrospinning of Magnetite-Polyacrylonitrile Composites for the Production of Oxygen Reduction Reaction Catalysts.

Polymers (Basel). 2023-10-12

[2]
Suitability of Mycelium-Reinforced Nanofiber Mats for Filtration of Different Dyes.

Polymers (Basel). 2023-9-29

本文引用的文献

[1]
Measuring Physical Properties of Electrospun Nanofiber Mats for Different Biomedical Applications.

Membranes (Basel). 2023-4-30

[2]
Electrospun Nanofibre Filtration Media to Protect against Biological or Nonbiological Airborne Particles.

Polymers (Basel). 2021-9-24

[3]
Electrospun Nanofiber Mats for Filtering Applications-Technology, Structure and Materials.

Polymers (Basel). 2021-4-22

[4]
Needleless electrospun phytochemicals encapsulated nanofibre based 3-ply biodegradable mask for combating COVID-19 pandemic.

Chem Eng J. 2021-7-15

[5]
Electrospun polyurethane/carbon nanotube composites with different amounts of carbon nanotubes and almost the same fiber diameter for biomedical applications.

Mater Sci Eng C Mater Biol Appl. 2021-1

[6]
On the reliability of highly magnified micrographs for structural analysis in materials science.

Sci Rep. 2020-9-7

[7]
Electrospinning on 3D Printed Polymers for Mechanically Stabilized Filter Composites.

Polymers (Basel). 2019-12-8

[8]
Stabilization of Electrospun Nanofiber Mats Used for Filters by 3D Printing.

Polymers (Basel). 2019-10-6

[9]
New Polymers for Needleless Electrospinning from Low-Toxic Solvents.

Nanomaterials (Basel). 2019-1-2

[10]
Electrospun Nanofiber Mats as "Smart Surfaces" for Desorption Electrospray Ionization Mass Spectrometry (DESI MS)-Based Analysis and Imprint Imaging.

Anal Chem. 2016-5-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索