用于溶液中光热实验的芜菁黄花叶病毒上的金和氧化铁纳米颗粒组装体。

Gold and Iron Oxide Nanoparticle Assemblies on Turnip Yellow Mosaic Virus for In-Solution Photothermal Experiments.

作者信息

Nguyen Ha Anh, Darwish Sendos, Pham Hong Nam, Ammar Souad, Ha-Duong Nguyet-Thanh

机构信息

Phenikaa University Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam.

Laboratoire ITODYS, CNRS UMR-7086, Université Paris Cité, 15 rue J-A de Baïf, 75013 Paris, France.

出版信息

Nanomaterials (Basel). 2023 Sep 7;13(18):2509. doi: 10.3390/nano13182509.

Abstract

The ability to construct three-dimensional architectures via nanoscale engineering is important for emerging applications in sensors, catalysis, controlled drug delivery, microelectronics, and medical diagnostics nanotechnologies. Because of their well-defined and highly organized symmetric structures, viral plant capsids provide a 3D scaffold for the precise placement of functional inorganic particles yielding advanced hierarchical hybrid nanomaterials. In this study, we used turnip yellow mosaic virus (TYMV), grafting gold nanoparticles (AuNP) or iron oxide nanoparticles (IONP) onto its outer surface. It is the first time that such an assembly was obtained with IONP. After purification, the resulting nano-biohybrids were characterized by different technics (dynamic light scattering, transmission electron microcopy, X-ray photoelectron spectroscopy…), showing the robustness of the architectures and their colloidal stability in water. In-solution photothermal experiments were then successfully conducted on TYMV-AuNP and TYMV-IONP, the related nano-biohybrids, evidencing a net enhancement of the heating capability of these systems compared to their free NP counterparts. These results suggest that these virus-based materials could be used as photothermal therapeutic agents.

摘要

通过纳米级工程构建三维结构的能力对于传感器、催化、可控药物递送、微电子和医学诊断纳米技术等新兴应用至关重要。由于其结构明确且高度有序的对称结构,植物病毒衣壳为功能无机颗粒的精确放置提供了三维支架,从而产生先进的分级杂化纳米材料。在本研究中,我们使用芜菁黄花叶病毒(TYMV),将金纳米颗粒(AuNP)或氧化铁纳米颗粒(IONP)接枝到其外表面。这是首次用IONP获得这样的组装体。纯化后,通过不同技术(动态光散射、透射电子显微镜、X射线光电子能谱……)对所得的纳米生物杂化物进行表征,显示出结构的稳健性及其在水中的胶体稳定性。然后在TYMV-AuNP和TYMV-IONP这两种相关的纳米生物杂化物上成功进行了溶液内光热实验,证明与游离NP对应物相比,这些系统的加热能力有明显增强。这些结果表明,这些基于病毒的材料可用作光热治疗剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc95/10535558/7dfabff51e51/nanomaterials-13-02509-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索