Keuntje Jan, Mrzljak Selim, Gerdes Lars, Wippo Verena, Kaierle Stefan, Walther Frank, Jaeschke Peter
Laser Zentrum Hannover e.V., 30419 Hannover, Germany.
Chair of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany.
Polymers (Basel). 2023 Sep 21;15(18):3851. doi: 10.3390/polym15183851.
Laser cutting of carbon fibre-reinforced plastics (CFRP) is a promising alternative to traditional manufacturing methods due to its non-contact nature and high automation potential. To establish the process for an industrial application, it is necessary to predict the temperature fields arising as a result of the laser energy input. Elevated temperatures during the cutting process can lead to damage in the composite's matrix material, resulting in local changes in the structural properties and reduced material strength. To address this, a three-dimensional finite element model is developed to predict the temporal and spatial temperature evolution during laser cutting. Experimental values are compared with simulated temperatures, and the cutting kerf geometry is examined. Experiments are conducted at 45° and 90° cutting angles relative to the main fibre orientation using a 1.1 mm thick epoxy-based laminate. The simulation accurately captures the overall temperature field expansion caused by multiple laser beam passes over the workpiece. The influence of fibre orientation is evident, with deviations in specific temperature data indicating differences between the estimated and real material properties. The model tends to overestimate the ablation rate in the kerf geometry, attributed to mesh resolution limitations. Within the parameters investigated, hardly any expansion of a heat affected zone (HAZ) is visible, which is confirmed by the simulation results.
激光切割碳纤维增强塑料(CFRP)由于其非接触特性和高自动化潜力,是传统制造方法的一个有前景的替代方案。为了建立工业应用的工艺,有必要预测激光能量输入所产生的温度场。切割过程中的高温会导致复合材料基体材料受损,从而导致结构性能的局部变化和材料强度降低。为了解决这个问题,开发了一个三维有限元模型来预测激光切割过程中的时间和空间温度演变。将实验值与模拟温度进行比较,并检查切割缝几何形状。使用1.1毫米厚的环氧基层压板,在相对于主纤维方向45°和90°的切割角度下进行实验。模拟准确地捕捉了多束激光束在工件上多次通过所引起的整体温度场扩展。纤维取向的影响很明显,特定温度数据的偏差表明估计的材料性能与实际材料性能之间存在差异。该模型往往高估了切割缝几何形状中的烧蚀率,这归因于网格分辨率的限制。在所研究的参数范围内,几乎看不到热影响区(HAZ)有任何扩展,模拟结果证实了这一点。