Suppr超能文献

通过定性访谈了解在英格兰卫生行政数据源中收集种族信息所使用的方法和系统。

Qualitative interviews to understand methods and systems used to collect ethnicity information in health administrative data sources in England.

作者信息

Quayle Gemma, Jones Bethan, Atkins Jessica, Shannon Caitriona, Smith Roxanne, Tabor David, Bałabuch Zuzanna, Cox Courtney, Horsell Sarah, John Marie, McGrail White Tomas, Vickers Sophie, Whittinger Sophia, Bannister Neil, Raleigh Veena, Mateen Bilal, Drummond Rosemary

机构信息

Office for National Statistics, Newport, NP10 8XG, UK.

The King's Fund, London, England, W1G 0AN, UK.

出版信息

Wellcome Open Res. 2023 Jun 21;8:265. doi: 10.12688/wellcomeopenres.19262.1. eCollection 2023.

Abstract

This article is one of a series aiming to inform analytical methods to improve comparability of estimates of ethnic health disparities based on different sources. This article explores the quality of ethnicity data and identifies potential sources of bias when ethnicity information is collected in three key NHS data sources. Future research can build on these findings to explore analytical methods to mitigate biases.  Thematic analysis of semi-structured qualitative interviews to explore potential sources of error and bias in the process of collecting ethnicity information across three NHS data sources: General Practice Extraction Service (GPES) Data for Pandemic Planning and Research (GDPPR), Hospital Episode Statistics (HES) and Improving Access to Psychological Therapies (IAPT). The study included feedback from 22 experts working on different aspects of health admin data collection for England (including staff from NHS Digital, IT system suppliers and relevant healthcare service providers).  Potential sources of error and bias were identified across data collection, data processing and quality assurance processes. Similar issues were identified for all three sources. Our analysis revealed three main themes which can result in bias and inaccuracies in ethnicity data recorded: data infrastructure challenges, human challenges, and institutional challenges.  Findings highlighted that analysts using health admin data should be aware of the main sources of potential error and bias in health admin data, and be mindful that the main sources of error identified are more likely to affect the ethnicity data for ethnic minority groups. Where possible, analysts should describe and seek to account for this bias in their research.

摘要

本文是系列文章之一,旨在介绍分析方法,以提高基于不同来源的种族健康差异估计的可比性。本文探讨了种族数据的质量,并确定了在三个关键的英国国家医疗服务体系(NHS)数据源中收集种族信息时潜在的偏差来源。未来的研究可以基于这些发现,探索减轻偏差的分析方法。对半结构化定性访谈进行主题分析,以探索在通过三个NHS数据源(大流行规划与研究通用实践提取服务(GPES)数据、医院事件统计(HES)以及改善心理治疗可及性(IAPT))收集种族信息的过程中潜在的误差和偏差来源。该研究纳入了22位在英格兰健康管理数据收集不同方面工作的专家的反馈(包括来自NHS数字部门、IT系统供应商和相关医疗服务提供商的工作人员)。在数据收集、数据处理和质量保证过程中识别出了潜在的误差和偏差来源。在所有三个数据源中都发现了类似问题。我们的分析揭示了三个主要主题,这些主题可能导致所记录的种族数据出现偏差和不准确:数据基础设施挑战、人为挑战和机构挑战。研究结果强调,使用健康管理数据的分析人员应意识到健康管理数据中潜在误差和偏差的主要来源,并注意到所识别出的主要误差来源更有可能影响少数族裔群体的种族数据。在可能的情况下,分析人员应在其研究中描述并设法解释这种偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/430d/10521056/9d981b1ab698/wellcomeopenres-8-21345-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验