文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent advances in nanoflowers: compositional and structural diversification for potential applications.

作者信息

Lee Su Jung, Jang Hongje, Lee Do Nam

机构信息

Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea

Department of Chemistry, Kwangwoon University Seoul 01897 Korea

出版信息

Nanoscale Adv. 2023 Sep 4;5(19):5165-5213. doi: 10.1039/d3na00163f. eCollection 2023 Sep 26.


DOI:10.1039/d3na00163f
PMID:37767032
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10521310/
Abstract

In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/53b8e3cc0700/d3na00163f-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/b10e64697993/d3na00163f-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/790c3e280f8c/d3na00163f-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/974c509cc93e/d3na00163f-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/e724028d3043/d3na00163f-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/cbb9aa449b21/d3na00163f-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/a61425cd013b/d3na00163f-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/2b6ffd8c1c50/d3na00163f-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/72147fcb727b/d3na00163f-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/5e64da22fcba/d3na00163f-s3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/4720934b4c66/d3na00163f-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/963ce2ccbe26/d3na00163f-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/acc143af163d/d3na00163f-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/09af69144e1c/d3na00163f-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/2f12009907d4/d3na00163f-s4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/8ea982675655/d3na00163f-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/b9f80ccce0ab/d3na00163f-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/6b6c4f3b22df/d3na00163f-s5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/c8d4c8c4f8d8/d3na00163f-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/a65d4dd59aeb/d3na00163f-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/f721384226c8/d3na00163f-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/83470265b739/d3na00163f-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/a6c031c5ac00/d3na00163f-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/47d49ca1d964/d3na00163f-s6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/616bfa05a105/d3na00163f-s7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/24938e0ed1a1/d3na00163f-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/6a63aca30768/d3na00163f-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/993cfc25c697/d3na00163f-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/d249058b6071/d3na00163f-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/53b8e3cc0700/d3na00163f-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/b10e64697993/d3na00163f-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/790c3e280f8c/d3na00163f-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/974c509cc93e/d3na00163f-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/e724028d3043/d3na00163f-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/cbb9aa449b21/d3na00163f-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/a61425cd013b/d3na00163f-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/2b6ffd8c1c50/d3na00163f-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/72147fcb727b/d3na00163f-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/5e64da22fcba/d3na00163f-s3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/4720934b4c66/d3na00163f-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/963ce2ccbe26/d3na00163f-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/acc143af163d/d3na00163f-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/09af69144e1c/d3na00163f-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/2f12009907d4/d3na00163f-s4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/8ea982675655/d3na00163f-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/b9f80ccce0ab/d3na00163f-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/6b6c4f3b22df/d3na00163f-s5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/c8d4c8c4f8d8/d3na00163f-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/a65d4dd59aeb/d3na00163f-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/f721384226c8/d3na00163f-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/83470265b739/d3na00163f-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/a6c031c5ac00/d3na00163f-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/47d49ca1d964/d3na00163f-s6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/616bfa05a105/d3na00163f-s7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/24938e0ed1a1/d3na00163f-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/6a63aca30768/d3na00163f-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/993cfc25c697/d3na00163f-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/d249058b6071/d3na00163f-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a520/10521310/53b8e3cc0700/d3na00163f-p3.jpg

相似文献

[1]
Recent advances in nanoflowers: compositional and structural diversification for potential applications.

Nanoscale Adv. 2023-9-4

[2]
Inorganic Nanoflowers-Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review.

Pharmaceutics. 2022-9-6

[3]
Hybrid metal-organic nanoflowers and their application in biotechnology and medicine.

Colloids Surf B Biointerfaces. 2019-7-13

[4]
Organic-inorganic nanoflowers: from design strategy to biomedical applications.

Nanoscale. 2019-9-18

[5]
Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery.

Acc Chem Res. 2011-5-25

[6]
Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future.

Adv Colloid Interface Sci. 2022-11

[7]
Synthesis and Applications of Nanoflowers.

Recent Pat Nanotechnol. 2016

[8]
Peroxidase-like Catalytic Activity of Copper-Mediated Protein-Inorganic Hybrid Nanoflowers and Nanofibers of β-Lactoglobulin and α-Lactalbumin: Synthesis, Spectral Characterization, Microscopic Features, and Catalytic Activity.

ACS Appl Mater Interfaces. 2016-4-27

[9]
Organic-inorganic hybrid nanoflowers: types, characteristics, and future prospects.

J Nanobiotechnology. 2015-9-4

[10]
Recent progress in biosensors based on organic-inorganic hybrid nanoflowers.

Biosens Bioelectron. 2018-8-25

引用本文的文献

[1]
Polyphosphate Kinase from , One Enzyme Catalyzing a Two-Step Cascade Reaction to Synthesize ATP from AMP.

Int J Mol Sci. 2024-12-3

[2]
Transforming cancer detection and treatment with nanoflowers.

Med Oncol. 2024-10-22

本文引用的文献

[1]
Inorganic Nanoflowers-Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review.

Pharmaceutics. 2022-9-6

[2]
Stable Iron Oxide Nanoflowers with Exceptional Magnetic Heating Efficiency: Simple and Fast Polyol Synthesis.

ACS Appl Mater Interfaces. 2021-9-29

[3]
Fabrication of Nanoflower-like MCoP (M = Fe and Ni) Composites for High-Performance Supercapacitors.

Langmuir. 2021-9-7

[4]
Biosynthesis of Flower-Shaped CuO Nanostructures and Their Photocatalytic and Antibacterial Activities.

Nanomicro Lett. 2020-1-20

[5]
Advanced Nanoscale Surface Characterization of CuO Nanoflowers for Significant Enhancement of Catalytic Properties.

Molecules. 2021-5-4

[6]
Emulsion-template synthesis of mesoporous nickel oxide nanoflowers composed of crossed nanosheets for effective nitrogen reduction.

Dalton Trans. 2021-5-4

[7]
Ultrasound-Triggered Assembly of Covalent Triazine Framework for Synthesizing Heteroatom-Doped Carbon Nanoflowers Boosting Metal-Free Bifunctional Electrocatalysis.

ACS Appl Mater Interfaces. 2021-3-24

[8]
Flexible synthesis of Au@Pd core-shell mesoporous nanoflowers for efficient methanol oxidation.

Nanoscale. 2021-2-11

[9]
Bioinspired synthesis of zinc oxide nano-flowers: A surface enhanced antibacterial and harvesting efficiency.

Mater Sci Eng C Mater Biol Appl. 2021-2

[10]
Hierarchical TiO Nanoflower Photocatalysts with Remarkable Activity for Aqueous Methylene Blue Photo-Oxidation.

ACS Omega. 2020-7-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索