Suppr超能文献

用于动态纹理分类的多模态触觉数据集。

A multimodal tactile dataset for dynamic texture classification.

作者信息

Monteiro Rocha Lima Bruno, Danyamraju Venkata Naga Sai Siddhartha, Alves de Oliveira Thiago Eustaquio, Prado da Fonseca Vinicius

机构信息

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada.

Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, Canada.

出版信息

Data Brief. 2023 Sep 16;50:109590. doi: 10.1016/j.dib.2023.109590. eCollection 2023 Oct.

Abstract

Reproducing human-like dexterous manipulation in robots requires identifying objects and textures. In unstructured settings, robots equipped with tactile sensors may detect textures by using touch-related characteristics. An extensive dataset of the physical interaction between a tactile-enable robotic probe is required to investigate and develop methods for categorizing textures. Therefore, this motivates us to compose a dataset from the signals of a bioinspired multimodal tactile sensing module while a robotic probe brings the module to dynamically contact 12 tactile textures under three exploratory velocities. This dataset contains pressure, acceleration, angular rate, and magnetic field variation signals from sensors embedded in the compliant structure of the sensing module. The pressure signals were sampled at 350 Hz, while the signals of the other sensors were sampled at 1500 Hz. Each texture was explored 100 times for each exploratory velocity, and each exploratory episode consisted of a sliding motion in the x and y directions tangential to the surface where the texture is placed. The total number of exploratory episodes in the dataset is 3600. The tactile texture dataset can be used for any project in the area of object recognition and robotic manipulation, and it is especially well suited for tactile texture reconstruction and recognition tasks. The dataset can also be used to study anisotropic textures and how robotic tactile exploration has to consider sliding motion directions.

摘要

在机器人中再现类人灵巧操作需要识别物体和纹理。在非结构化环境中,配备触觉传感器的机器人可以通过利用与触摸相关的特征来检测纹理。为了研究和开发纹理分类方法,需要一个关于具有触觉功能的机器人探头物理交互的广泛数据集。因此,这促使我们在机器人探头以三种探索速度使模块动态接触12种触觉纹理时,从生物启发式多模态触觉传感模块的信号中合成一个数据集。该数据集包含来自嵌入在传感模块柔顺结构中的传感器的压力、加速度、角速率和磁场变化信号。压力信号以350Hz采样,而其他传感器的信号以1500Hz采样。对于每种探索速度,每种纹理都被探索100次,并且每个探索片段包括在与放置纹理的表面相切的x和y方向上的滑动运动。数据集中探索片段的总数为3600。该触觉纹理数据集可用于物体识别和机器人操作领域的任何项目,并且特别适合于触觉纹理重建和识别任务。该数据集还可用于研究各向异性纹理以及机器人触觉探索如何考虑滑动运动方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d97/10519821/b93dc9eb185e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验