Suppr超能文献

少突胶质细胞的发育和髓鞘的形成受 Rag-Ragulator 复合物与 TFEB 之间的拮抗相互作用调控。

Oligodendrocyte development and myelin sheath formation are regulated by the antagonistic interaction between the Rag-Ragulator complex and TFEB.

机构信息

Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA.

Cellular and Tissue Genomics Department, Genentech, Inc., South San Francisco, California, USA.

出版信息

Glia. 2024 Feb;72(2):289-299. doi: 10.1002/glia.24473. Epub 2023 Sep 28.

Abstract

Myelination by oligodendrocytes is critical for fast axonal conduction and for the support and survival of neurons in the central nervous system. Recent studies have emphasized that myelination is plastic and that new myelin is formed throughout life. Nonetheless, the mechanisms that regulate the number, length, and location of myelin sheaths formed by individual oligodendrocytes are incompletely understood. Previous work showed that the lysosomal transcription factor TFEB represses myelination by oligodendrocytes and that the RagA GTPase inhibits TFEB, but the step or steps of myelination in which TFEB plays a role have remained unclear. Here, we show that TFEB regulates oligodendrocyte differentiation and also controls the length of myelin sheaths formed by individual oligodendrocytes. In the dorsal spinal cord of tfeb mutants, individual oligodendrocytes produce myelin sheaths that are longer than those produced by wildtype cells. Transmission electron microscopy shows that there are more myelinated axons in the dorsal spinal cord of tfeb mutants than in wildtype animals, but no significant change in axon diameter. In contrast to tfeb mutants, oligodendrocytes in rraga mutants produce shorter myelin sheaths. The sheath length in rraga; tfeb double mutants is not significantly different from wildtype, consistent with the antagonistic interaction between RagA and TFEB. Finally, we find that the GTPase activating protein Flcn and the RagCa and RagCb GTPases are also necessary for myelination by oligodendrocytes. These findings demonstrate that TFEB coordinates myelin sheath length and number during myelin formation in the central nervous system.

摘要

少突胶质细胞的髓鞘形成对于轴突的快速传导以及中枢神经系统中神经元的支持和存活至关重要。最近的研究强调了髓鞘形成的可塑性,即在整个生命过程中都会形成新的髓鞘。尽管如此,调节单个少突胶质细胞形成的髓鞘数量、长度和位置的机制仍不完全清楚。先前的工作表明,溶酶体转录因子 TFEB 抑制少突胶质细胞的髓鞘形成,而 RagA GTPase 抑制 TFEB,但 TFEB 发挥作用的髓鞘形成步骤仍不清楚。在这里,我们表明 TFEB 调节少突胶质细胞分化,并且还控制单个少突胶质细胞形成的髓鞘长度。在 tfeb 突变体的背根脊髓中,单个少突胶质细胞产生的髓鞘比野生型细胞产生的长。透射电子显微镜显示,tfeb 突变体的背根脊髓中有更多的髓鞘轴突,但轴突直径没有明显变化。与 tfeb 突变体相反,rraga 突变体中的少突胶质细胞产生较短的髓鞘。rraga; tfeb 双突变体的鞘长度与野生型无显著差异,这与 RagA 和 TFEB 之间的拮抗相互作用一致。最后,我们发现 GTPase 激活蛋白 Flcn 和 RagCa 和 RagCb GTPases 也是少突胶质细胞髓鞘形成所必需的。这些发现表明,TFEB 在中枢神经系统的髓鞘形成过程中协调髓鞘长度和数量。

相似文献

3
Oligodendrocyte Development in the Absence of Their Target Axons In Vivo.体内缺乏靶轴突时少突胶质细胞的发育
PLoS One. 2016 Oct 7;11(10):e0164432. doi: 10.1371/journal.pone.0164432. eCollection 2016.
6
Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length.少突胶质细胞 HCN2 通道调节髓鞘长度。
J Neurosci. 2021 Sep 22;41(38):7954-7964. doi: 10.1523/JNEUROSCI.2463-20.2021. Epub 2021 Aug 2.
8
N-Wasp Regulates Oligodendrocyte Myelination.N-Wasp 调节少突胶质细胞髓鞘形成。
J Neurosci. 2020 Aug 5;40(32):6103-6111. doi: 10.1523/JNEUROSCI.0912-20.2020. Epub 2020 Jun 29.

本文引用的文献

5
Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length.少突胶质细胞 HCN2 通道调节髓鞘长度。
J Neurosci. 2021 Sep 22;41(38):7954-7964. doi: 10.1523/JNEUROSCI.2463-20.2021. Epub 2021 Aug 2.
7
TFEB Biology and Agonists at a Glance.TFEB 的生物学特性及激动剂速览。
Cells. 2021 Feb 5;10(2):333. doi: 10.3390/cells10020333.
9
Myelin plasticity: sculpting circuits in learning and memory.髓鞘可塑性:学习和记忆中的电路塑造。
Nat Rev Neurosci. 2020 Dec;21(12):682-694. doi: 10.1038/s41583-020-00379-8. Epub 2020 Oct 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验