Suppr超能文献

通过因果推理加强关联。

Strengthening Association through Causal Inference.

机构信息

From the Section of Plastic and Reconstructive Surgery, University of Michigan Health System.

the Section of Plastic Surgery, Department of Surgery, University of Michigan Medical School.

出版信息

Plast Reconstr Surg. 2023 Oct 1;152(4):899-907. doi: 10.1097/PRS.0000000000010305. Epub 2023 Feb 15.

Abstract

Understanding causal association and inference is critical to study health risks, treatment effectiveness, and the impact of health care interventions. Although defining causality has traditionally been limited to rigorous, experimental contexts, techniques to estimate causality from observational data are highly valuable for clinical questions in which randomization may not be feasible or appropriate. In this review, the authors highlight several methodologic options to deduce causality from observational data, including regression discontinuity, interrupted time series, and difference-in-differences approaches. Understanding the potential applications, assumptions, and limitations of quasi-experimental methods for observational data can expand our interpretation of causal relationships for surgical conditions.

摘要

理解因果关系和推理对于研究健康风险、治疗效果以及医疗干预措施的影响至关重要。尽管传统上定义因果关系仅限于严格的实验环境,但从观察数据中估计因果关系的技术对于那些随机化可能不可行或不适当的临床问题非常有价值。在这篇综述中,作者强调了几种从观察数据中推断因果关系的方法选择,包括回归不连续性、中断时间序列和差异差异方法。了解观察数据的准实验方法的潜在应用、假设和局限性,可以扩展我们对手术条件下因果关系的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验