Zhang Le, Huang Jieyou, Song Miaoyan, Lu Chen, Wu Wenwei, Wu Xuehang
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
Guangxi Key Laboratory for High-value Utilization of Manganese Resources, Guangxi Normal University for Nationalities, Chongzuo 532200, China.
ACS Appl Mater Interfaces. 2023 Oct 11;15(40):47037-47048. doi: 10.1021/acsami.3c10312. Epub 2023 Sep 28.
An increase in the size of single-crystal particles can effectively reduce the interfacial side reactions of layered oxides for sodium-ion batteries at high voltages but may result in sluggish Na transport. Herein, single-crystal NaNiZnMnO with increased proportions of {010} planes is synthesized by adding low-cost NaCl as the molten salt. With the assistance of a NaCl molten salt, the median diameter (D50) of single-crystal NaNiZnMnO increases to 10.46 μm relative to that of the comparison sample without NaCl (6.57 μm). Electrolyte decomposition on the surface of single-crystal NaNiZnMnO is considerably suppressed, owing to a decrease in the specific surface area. Moreover, the increased exposure of {010} planes is favorable for improving the Na transport kinetics of single-crystal particles. Therefore, at 100 mA g, single-crystal NaNiZnMnO exhibits a high-capacity retention of 96.6% after 100 cycles, which is considerably greater than that of the comparison sample (86.8%). Moreover, the rate performance of single-crystal NaNiZnMnO (average discharge capacity of 81.2 mAh g) is superior to that of the comparison sample (average discharge capacity of 61.2 mAh g) at 2000 mA g. This work provides a new approach for promoting the single-crystal growth of layered oxides for highly stable interfaces at high voltages without compromising Na transport kinetics.
单晶颗粒尺寸的增加可以有效降低钠离子电池层状氧化物在高电压下的界面副反应,但可能导致钠离子传输迟缓。在此,通过添加低成本的氯化钠作为熔盐,合成了具有增加比例{010}面的单晶NaNiZnMnO。在氯化钠熔盐的辅助下,单晶NaNiZnMnO的中值直径(D50)相对于不含氯化钠的对比样品(6.57μm)增加到10.46μm。由于比表面积的减小,单晶NaNiZnMnO表面的电解质分解得到显著抑制。此外,{010}面暴露的增加有利于改善单晶颗粒的钠离子传输动力学。因此,在100 mA g下,单晶NaNiZnMnO在100次循环后表现出96.6%的高容量保持率,这大大高于对比样品(86.8%)。此外,在2000 mA g下,单晶NaNiZnMnO的倍率性能(平均放电容量为81.2 mAh g)优于对比样品(平均放电容量为61.2 mAh g)。这项工作为在不损害钠离子传输动力学的情况下,促进层状氧化物的单晶生长以实现高电压下高度稳定的界面提供了一种新方法。