Suppr超能文献

基于 SHAP 和硬投票集成方法的语音信号帕金森病诊断。

Diagnosis of Parkinson's disease based on voice signals using SHAP and hard voting ensemble method.

机构信息

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.

Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

出版信息

Comput Methods Biomech Biomed Engin. 2024 Oct;27(13):1858-1874. doi: 10.1080/10255842.2023.2263125. Epub 2023 Sep 28.

Abstract

Parkinson's disease (PD) is the second most common progressive neurological condition after Alzheimer's. The significant number of individuals afflicted with this illness makes it essential to develop a method to diagnose the conditions in their early phases. PD is typically identified from motor symptoms or via other Neuroimaging techniques. Expensive, time-consuming, and unavailable to the general public, these methods are not very accurate. Another issue to be addressed is the black-box nature of machine learning methods that needs interpretation. These issues encourage us to develop a novel technique using Shapley additive explanations (SHAP) and Hard Voting Ensemble Method based on voice signals to diagnose PD more accurately. Another purpose of this study is to interpret the output of the model and determine the most important features in diagnosing PD. The present article uses Pearson Correlation Coefficients to understand the relationship between input features and the output. Input features with high correlation are selected and then classified by the Extreme Gradient Boosting, Light Gradient Boosting Machine, Gradient Boosting, and Bagging. Moreover, the weights in Hard Voting Ensemble Method are determined based on the performance of the mentioned classifiers. At the final stage, it uses SHAP to determine the most important features in PD diagnosis. The effectiveness of the proposed method is validated using 'Parkinson Dataset with Replicated Acoustic Features' from the UCI machine learning repository. It has achieved an accuracy of 85.42%. The findings demonstrate that the proposed method outperformed state-of-the-art approaches and can assist physicians in diagnosing Parkinson's cases.

摘要

帕金森病(PD)是仅次于阿尔茨海默病的第二大常见进行性神经疾病。大量受这种疾病影响的人,使得开发一种在早期阶段诊断这种疾病的方法变得非常重要。PD 通常通过运动症状或其他神经影像学技术来识别。这些方法昂贵、耗时且公众无法获得,因此并不十分准确。另一个需要解决的问题是机器学习方法的黑盒性质需要解释。这些问题促使我们开发一种使用 Shapley 加法解释(SHAP)和基于语音信号的 Hard Voting 集成方法的新技术,以更准确地诊断 PD。本研究的另一个目的是解释模型的输出,并确定诊断 PD 中最重要的特征。本文使用皮尔逊相关系数来理解输入特征与输出之间的关系。选择具有高相关性的输入特征,然后使用极端梯度提升、轻梯度提升机、梯度提升和袋装对其进行分类。此外,Hard Voting 集成方法中的权重基于所提到的分类器的性能来确定。在最后阶段,它使用 SHAP 来确定 PD 诊断中最重要的特征。该方法的有效性通过 UCI 机器学习存储库中的“具有重复声学特征的帕金森数据集”进行验证,其准确率达到 85.42%。研究结果表明,该方法优于最先进的方法,可以帮助医生诊断帕金森病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验