Suppr超能文献

一种帕金森病识别的统一方法:不平衡缓解和网格搜索优化的 LightGBM 提升。

A unified approach for Parkinson's disease recognition: imbalance mitigation and grid search optimized boosting with LightGBM.

机构信息

Department of Electrical Engineering, Siksha O Anusandhan University, Bhubaneswar, 751030, India.

Center for Internet of Things, Siksha O Anusandhan University, Bhubaneswar, 751030, India.

出版信息

Med Biol Eng Comput. 2024 Nov;62(11):3471-3491. doi: 10.1007/s11517-024-03139-3. Epub 2024 Jun 14.

Abstract

The work elucidates the importance of accurate Parkinson's disease classification within medical diagnostics and introduces a novel framework for achieving this goal. Specifically, the study focuses on enhancing disease identification accuracy utilizing boosting methods. A standout contribution of this work lies in the utilization of a light gradient boosting machine (LGBM) coupled with hyperparameter tuning through grid search optimization (GSO) on the Parkinson's disease dataset derived from speech recording signals. In addition, the Synthetic Minority Over-sampling Technique (SMOTE) has also been employed as a pre-processing technique to balance the dataset, enhancing the robustness and reliability of the analysis. This approach is a novel addition to the study and underscores its potential to enhance disease identification accuracy. The datasets employed in this work include both gender-specific and combined cases, utilizing several distinctive feature subsets including baseline, Mel-frequency cepstral coefficients (MFCC), time-frequency, wavelet transform (WT), vocal fold, and tunable-Q-factor wavelet transform (TQWT). Comparative analyses against state-of-the-art boosting methods, such as AdaBoost and XG-Boost, reveal the superior performance of our proposed approach across diverse datasets and metrics. Notably, on the male cohort dataset, our method achieves exceptional results, demonstrating an accuracy of 0.98, precision of 1.00, sensitivity of 0.97, F1-Score of 0.98, and specificity of 1.00 when utilizing all features with GSO-LGBM. In comparison to AdaBoost and XGBoost, the proposed framework utilizing LGBM demonstrates superior accuracy, achieving an average improvement of 5% in classification accuracy across all feature subsets and datasets. These findings underscore the potential of the proposed methodology to enhance disease identification accuracy and provide valuable insights for further advancements in medical diagnostics.

摘要

本工作阐明了在医学诊断中准确进行帕金森病分类的重要性,并引入了一种新的实现这一目标的框架。具体而言,本研究专注于利用提升方法提高疾病识别准确性。这项工作的一个突出贡献在于利用轻梯度提升机(LGBM),并通过网格搜索优化(GSO)对源自语音记录信号的帕金森病数据集进行超参数调整。此外,还采用了合成少数类过采样技术(SMOTE)作为预处理技术来平衡数据集,从而增强分析的稳健性和可靠性。这种方法是该研究的一个新的补充,突出了其提高疾病识别准确性的潜力。本工作使用的数据集包括特定性别和综合病例,利用包括基线、梅尔频率倒谱系数(MFCC)、时频、小波变换(WT)、声带和可调 Q 因子小波变换(TQWT)在内的几个不同特征子集。与最先进的提升方法(如 AdaBoost 和 XGBoost)进行的对比分析表明,我们提出的方法在各种数据集和指标上都具有卓越的性能。值得注意的是,在男性队列数据集中,我们的方法取得了卓越的结果,当使用具有 GSO-LGBM 的所有特征时,其准确率为 0.98、精确率为 1.00、灵敏度为 0.97、F1 得分为 0.98、特异性为 1.00。与 AdaBoost 和 XGBoost 相比,利用 LGBM 的提出框架在所有特征子集和数据集上的分类准确率提高了 5%,表现出更高的准确性。这些发现突显了所提出的方法在提高疾病识别准确性方面的潜力,并为医学诊断的进一步发展提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验