Porto Fernando Garcez, Tanaka Leonardo Yuji, de Bessa Tiphany Coralie, Oliveira Percillia Victoria Santos, Souza Júlia Martins Felipe de, Kajihara Daniela, Fernandes Carolina Gonçalves, Santos Patricia Nolasco, Laurindo Francisco Rafael Martins
Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
Atherosclerosis. 2023 Oct;382:117283. doi: 10.1016/j.atherosclerosis.2023.117283. Epub 2023 Sep 14.
Redox signaling is involved in the pathophysiology of aortic aneurysm/dissection. Protein Disulfide Isomerases and its prototype PDIA1 are thiol redox chaperones mainly from endoplasmic reticulum (ER), while PDIA1 cell surface pool redox-regulates thrombosis, cytoskeleton remodeling and integrin activation, which are mechanisms involved in aortic disease. Here we investigate the roles of PDIA1 in aortic dissection.
Initially, we assessed the outcome of aortic aneurysm/dissection in transgenic PDIA1-overexpressing FVB mice using a model of 28-day exposure to lysyl oxidase inhibitor BAPN plus angiotensin-II infusion. In a second protocol, we assessed the effects of PDIA1 inhibitor isoquercetin (IQ) against aortic dissection in C57BL/6 mice exposed to BAPN for 28 days.
Transgenic PDIA1 overexpression associated with ca. 50% (p = 0.022) decrease (vs.wild-type) in mortality due to abdominal aortic rupture and protected against elastic fiber breaks in thoracic aorta. Conversely, exposure of mice to IQ increased thoracic aorta dissection-related mortality rates, from ca. 18%-50% within 28-days (p = 0.019); elastic fiber disruption and collagen deposition were also enhanced. The structurally-related compound diosmetin, which does not inhibit PDI, had negligible effects. In parallel, stretch-tension curves indicated that IQ amplified a ductile-type of biomechanical failure vs. control or BAPN-exposed mice aortas. IQ-induced effects seemed unassociated with nonspecific antioxidant effects or ER stress. In both models, echocardiographic analysis of surviving mice suggested that aortic rupture was dissociated from progressive dilatation.
Our data indicate a protective role of PDIA1 against aortic dissection/rupture and potentially uncovers a novel integrative mechanism coupling redox and biomechanical homeostasis in vascular remodeling.
氧化还原信号传导参与主动脉瘤/夹层的病理生理过程。蛋白质二硫键异构酶及其原型PDIA1是主要来自内质网(ER)的硫醇氧化还原伴侣,而PDIA1细胞表面池可通过氧化还原调节血栓形成、细胞骨架重塑和整合素激活,这些都是与主动脉疾病相关的机制。在此,我们研究PDIA1在主动脉夹层中的作用。
首先,我们使用赖氨酸氧化酶抑制剂BAPN暴露28天并输注血管紧张素II的模型,评估转基因过表达PDIA1的FVB小鼠的主动脉瘤/夹层结局。在第二个方案中,我们评估了PDIA1抑制剂异槲皮素(IQ)对暴露于BAPN 28天的C57BL/6小鼠主动脉夹层的影响。
转基因PDIA1过表达与腹主动脉破裂导致的死亡率降低约50%(p = 0.022)(与野生型相比)相关,并防止胸主动脉弹性纤维断裂。相反,小鼠暴露于IQ会增加胸主动脉夹层相关的死亡率,在28天内从约18%增加到50%(p = 0.019);弹性纤维破坏和胶原沉积也会增强。结构相关化合物香叶木素不抑制PDI,其影响可忽略不计。同时,拉伸-张力曲线表明,与对照或BAPN暴露的小鼠主动脉相比,IQ放大了一种韧性型生物力学衰竭。IQ诱导的效应似乎与非特异性抗氧化效应或内质网应激无关。在这两个模型中,对存活小鼠的超声心动图分析表明,主动脉破裂与进行性扩张无关。
我们的数据表明PDIA1对主动脉夹层/破裂具有保护作用,并可能揭示了一种在血管重塑中耦合氧化还原和生物力学稳态的新型整合机制。