Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Institute for Research and Development on Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Entre Ríos 3100, Argentina.
J Mech Behav Biomed Mater. 2023 Nov;147:106130. doi: 10.1016/j.jmbbm.2023.106130. Epub 2023 Sep 20.
Incomplete glottal closure is a laryngeal configuration wherein the glottis is not fully obstructed prior to phonation. It has been linked to inefficient voice production and voice disorders. Various incomplete glottal closure patterns can arise and the mechanisms driving them are not well understood. In this work, we introduce an Euler-Bernoulli composite beam vocal fold (VF) model that produces qualitatively similar incomplete glottal closure patterns as those observed in experimental and high-fidelity numerical studies, thus offering insights into the potential underlying physical mechanisms. Refined physiological insights are pursued by incorporating the beam model into a VF posturing model that embeds the five intrinsic laryngeal muscles. Analysis of the combined model shows that co-activating the lateral cricoarytenoid (LCA) and interarytenoid (IA) muscles without activating the thyroarytenoid (TA) muscle results in a bowed (convex) VF geometry with closure at the posterior margin only; this is primarily attributed to the reactive moments at the anterior VF margin. This bowed pattern can also arise during VF compression (due to extrinsic laryngeal muscle activation for example), wherein the internal moment induced passively by the TA muscle tissue is the predominant mechanism. On the other hand, activating the TA muscle without incorporating other adductory muscles results in anterior and mid-membranous glottal closure, a concave VF geometry, and a posterior glottal opening driven by internal moments induced by TA muscle activation. In the case of initial full glottal closure, the posterior cricoarytenoid (PCA) muscle activation cancels the adductory effects of the LCA and IA muscles, resulting in a concave VF geometry and posterior glottal opening. Furthermore, certain maneuvers involving co-activation of all adductory muscles result in an hourglass glottal shape due to a reactive moment at the anterior VF margin and moderate internal moment induced by TA muscle activation. These findings have implications regarding potential laryngeal maneuvers in patients with voice disorders involving imbalances or excessive tension in the laryngeal muscles such as muscle tension dysphonia.
声门不完全闭合是一种喉结构,其中在发声之前声门并未完全阻塞。它与低效的发声和嗓音障碍有关。各种不完全声门闭合模式可能会出现,而驱动这些模式的机制尚未得到很好的理解。在这项工作中,我们引入了一个欧拉-伯努利复合梁声带(VF)模型,该模型产生的不完全声门闭合模式与实验和高保真数值研究中观察到的模式定性相似,从而为潜在的物理机制提供了见解。通过将梁模型纳入嵌入五个内在喉肌的 VF 姿势模型,进一步追求精细的生理学见解。对组合模型的分析表明,在不激活杓状肌的情况下共同激活外侧环杓(LCA)和杓间肌(IA)会导致 VF 呈弓形(凸形)几何形状,仅在后缘闭合;这主要归因于 VF 前缘的反作用矩。这种弓形模式也可能在 VF 压缩期间出现(例如,由于外在喉肌的激活),其中 TA 肌肉组织被动诱导的内部力矩是主要机制。另一方面,在不包含其他内收肌的情况下激活 TA 肌肉会导致前中膜性声门闭合、凹形 VF 几何形状和由 TA 肌肉激活引起的后声门开口,这是由 TA 肌肉激活引起的内部力矩驱动的。在后声门闭合的情况下,后环杓肌(PCA)的激活会抵消 LCA 和 IA 肌肉的内收作用,导致 VF 呈凹形几何形状和后声门开口。此外,某些涉及所有内收肌共同激活的操作会由于 VF 前缘的反作用矩和 TA 肌肉激活引起的适度内部力矩而导致沙漏形声门形状。这些发现对于涉及喉肌失衡或过度紧张(如肌肉紧张性发声障碍)的嗓音障碍患者的潜在喉操作具有重要意义。